Skip to main content
Log in

Density-functional theory of the catnip molecule, nepetalactone

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Nepetalactones belongs to the group of iridoid monoterpenoids, which are present in the aerial parts of nepeta plants. Nepetalactone is an attractant to feline animals causing euphoric effects, while it is a repellent to mosquitoes and cockroaches. It is also a pheromone for several insect aphid species. The main objective of this research was to study the electronic and spectral properties of nepetalactones. We investigated its structural properties using hybrid density-functional theory of B3LYP and WB97XD functional with the 6-311++G(d,p) basis set to optimize the geometry, and then computed the electronic structure, HOMO–LUMO, natural bond orbitals, molecular electronic potential and its contour map. We also obtained spectral signatures of NMR, IR and UV–Vis, and compared them with experimental data from the literature. The DFT study provided different electronic and spectral information that will be of value for further research on making new derivatives of nepetalactones for commercial purposes. Nepetalactones have a promising future in the development of novel mosquito repellents for the control of malaria and arboviral diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Data are available upon request.

Code availability

Not applicable.

Abbreviations

DFT:

Density-functional theory

B3LYP:

Becke 3-parameter Lee–Yang–Parr exchange–correlation functional

HOMO:

Highest occupied molecular orbital

LUMO:

Lowest unoccupied molecular orbital

NLO:

Non-linear optical

NMR:

Nuclear magnetic resonance spectroscopy

SCF:

Self consistent field

GIAO:

Gauge‐including atomic orbital

TMS:

Tetramethyl silane

IR:

Infra-red spectroscopy

UV–Vis:

Ultra-violet visible spectroscopy

NBO:

Natural bond orbitals

FMO:

Frontier molecular orbital

NAC:

Natural atomic charges

MEP:

Molecular electrostatic potential

VEDA:

Visualization Energy Distribution Analysis

PED:

Potential energy distribution

ppm:

Parts per million

References

  1. Aničić N, Matekalo D, Skorić M et al (2018) Trichome-specific and developmentally regulated biosynthesis of nepetalactones in leaves of cultivated Nepeta rtanjensis plants. Ind Crops Prod 117:347–358. https://doi.org/10.1016/j.indcrop.2018.03.019

    Article  CAS  Google Scholar 

  2. Gkinis G, Bozin B, Mimica-Dukic N, Tzakou O (2010) Antioxidant activity of Nepeta nuda L. ssp. nuda essential oil rich in nepetalactones from Greece. J Med Food 13:1176–1181. https://doi.org/10.1089/jmf.2009.0218

    Article  CAS  PubMed  Google Scholar 

  3. Nestorović J, Mišić D, Šiler B et al (2010) Nepetalactone content in shoot cultures of three endemic Nepeta species and the evaluation of their antimicrobial activity. Fitoterapia 81:621–626. https://doi.org/10.1016/j.fitote.2010.03.007

    Article  CAS  PubMed  Google Scholar 

  4. Aydin S, Beis R, Öztürk Y et al (1998) Nepetalactone: a new opioid analgesic from Nepeta caesarea Boiss. J Pharm Pharmacol 50:813–817. https://doi.org/10.1111/j.2042-7158.1998.tb07145.x

    Article  CAS  PubMed  Google Scholar 

  5. Gkinis G, Ioannou E, Quesada A et al (2008) Parnapimarol and nepetaparnone from Nepeta parnassica. J Nat Prod 71:926–928. https://doi.org/10.1021/np800043b

    Article  CAS  PubMed  Google Scholar 

  6. Peterson CJ, Coats JR (2011) Catnip essential oil and its nepetalactone isomers as repellents for mosquitoes. In: ACS symposium series. pp 59–65

  7. Sparks JT, Bohbot JD, Ristic M et al (2017) Chemosensory responses to the repellent nepeta essential oil and its major component nepetalactone by Aedes aegypti (Diptera: Culicidae), a vector of Zika virus. J Med Entomol. https://doi.org/10.1093/jme/tjx059

    Article  PubMed  Google Scholar 

  8. Stewart-Jones A, Dewhirst SY, Durrant L et al (2007) Structure, ratios and patterns of release in the sex pheromone of an aphid, Dysaphis plantaginea. J Exp Biol. https://doi.org/10.1242/jeb.009944

    Article  PubMed  Google Scholar 

  9. Zhu J, Cossé AA, Obrycki JJ et al (1999) Olfactory reactions of the twelve-spotted lady beetle, Coleomegilla maculata and the green lacewing, Chrysoperla carnea to semiochemicals released from their prey and host plant: electroantennogram and behavioral responses. J Chem Ecol. https://doi.org/10.1023/A:1020846212465

    Article  Google Scholar 

  10. Zhou Q, Chen X, Dawei M (2010) Asymmetric, protecting-group-free total synthesis of (-)-englerin A. Angew Chem Int Ed 49:3513–3516. https://doi.org/10.1002/anie.201000888

    Article  CAS  Google Scholar 

  11. Simmons D, Gobble C, Chickos J (2016) Vapor pressure and enthalpy of vaporization of oil of catnip by correlation gas chromatography. J Chem Thermodyn. https://doi.org/10.1016/j.jct.2015.09.005

    Article  Google Scholar 

  12. Zhu JJ, Dunlap CA, Behle RW et al (2010) Repellency of a wax-based catnip-oil formulation against stable flies. J Agric Food Chem. https://doi.org/10.1021/jf102811k

    Article  PubMed  Google Scholar 

  13. Chauhan KR, Klun JA, Debboun M, Kramer M (2005) Feeding deterrent effects of catnip oil components compared with two synthetic amides against Aedes aegypti. J Med Entomol 42:643–646. https://doi.org/10.1603/0022-2585(2005)042[0643:FDEOCO]2.0.CO;2

    Article  CAS  PubMed  Google Scholar 

  14. Birkett MA, Hassanali A, Hoglund S et al (2011) Repellent activity of catmint, Nepeta cataria, and iridoid nepetalactone isomers against Afro-tropical mosquitoes, ixodid ticks and red poultry mites. Phytochemistry. https://doi.org/10.1016/j.phytochem.2010.09.016

    Article  PubMed  Google Scholar 

  15. Gkinis G, Tzakou O, Iliopoulou D, Roussis V (2003) Chemical composition and biological activity of Nepeta parnassica oils and isolated nepetalactones. Z Naturforsch Sect C. https://doi.org/10.1515/znc-2003-9-1015

    Article  Google Scholar 

  16. Gkinis G, Michaelakis A, Koliopoulos G et al (2014) Evaluation of the repellent effects of Nepeta parnassica extract, essential oil, and its major nepetalactone metabolite against mosquitoes. Parasitol Res. https://doi.org/10.1007/s00436-013-3750-3

    Article  PubMed  Google Scholar 

  17. Badshah SL, Ullah A, Ahmad N et al (2018) Increasing the strength and production of artemisinin and its derivatives. Molecules 23:100

    Article  Google Scholar 

  18. Khan H, Amin H, Ullah A et al (2016) Antioxidant and antiplasmodial activities of bergenin and 11-O-galloylbergenin isolated from Mallotus philippensis. Oxid Med Cell Longev. https://doi.org/10.1155/2016/1051925

    Article  PubMed  PubMed Central  Google Scholar 

  19. Patience GS, Karirekinyana G, Galli F et al (2018) Sustainable manufacture of insect repellents derived from Nepeta cataria. Sci Rep. https://doi.org/10.1038/s41598-017-18141-z

    Article  PubMed  PubMed Central  Google Scholar 

  20. Glinwood RT, Du YJ, Smiley DWM, Powell W (1999) Comparative responses of parasitoids to synthetic and plant-extracted nepetalactone component of aphid sex pheromones. J Chem Ecol. https://doi.org/10.1023/A:1020872412891

    Article  Google Scholar 

  21. Lichman ABR, Kamileen MO, Titchiner GR et al (2018) Uncoupled activation and cyclisation in catmint reductive terpenoid biosynthesis. bioRxiv Biochem 5:1–16. https://doi.org/10.1101/391953

  22. Coria-Avila GA, Espín-Iturbe LT, Canseco-Sedano R et al (2017) Active and passive responses to catnip (Nepeta cataria) are affected by age, sex and early gonadectomy in male and female cats. Behav Process 142:110–115. https://doi.org/10.1016/j.beproc.2017.06.008

    Article  Google Scholar 

  23. Turner R (2007) How does catnip work its magic on cats? Sci Am 297:102

    Article  Google Scholar 

  24. Højland CR, Andersen HH, Poulsen JN et al (2015) A human surrogate model of itch utilizing the TRPA1 agonist trans-cinnamaldehyde. Acta Derm Venereol 95:798–803. https://doi.org/10.2340/00015555-2103

    Article  CAS  PubMed  Google Scholar 

  25. Melo N, Capek M, Arenas OM et al (2021) The irritant receptor TRPA1 mediates the mosquito repellent effect of catnip. Curr Biol 31:1988-1994.e5. https://doi.org/10.1016/j.cub.2021.02.010

    Article  CAS  PubMed  Google Scholar 

  26. Zomorodian K, Saharkhiz MJ, Rahimi MJ, Shariatifard S (2013) Chemical composition and antimicrobial activities of essential oil of Nepeta cataria L. against common causes of oral infections. J Dent Tehran Univ Med Sci 10(4): 329–337

  27. Balasubramani S, Sabapathi G, Moola AK et al (2018) Evaluation of the leaf essential oil from Artemisia vulgaris and its larvicidal and repellent activity against dengue fever vector Aedes aegypti—an experimental and molecular docking investigation. ACS Omega 3:15657–15665. https://doi.org/10.1021/acsomega.8b01597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sadgrove NJ, Collins TL, Legendre SVAM et al (2016) The iridoid myodesert-1-ene and elemol/eudesmol are found in distinct chemotypes of the Australian aboriginal medicinal plant Eremophila dalyana (Scrophulariaceae). Nat Prod Commun 11:1211–1214. https://doi.org/10.1177/1934578x1601100902

    Article  CAS  PubMed  Google Scholar 

  29. Axelsson A, Hammarvid E, Rahm M, Sundén H (2019) Formal addition of acetone to unactivated Michael acceptors via ring-opening and retro-Claisen fragmentation of dihydropyranones. ChemRxiv. https://doi.org/10.26434/chemrxiv.9822575

    Article  Google Scholar 

  30. Weinhold F, Landis CR (2012) natural bond orbitals and extensions of localized bonding concepts. Chem Educ Res Pract 2:91–104. https://doi.org/10.1039/b1rp90011k

    Article  Google Scholar 

  31. Reed AE, Weinhold F (1985) Natural localized molecular orbitals. J Chem Phys 83:1736–1740. https://doi.org/10.1063/1.449360

    Article  CAS  Google Scholar 

  32. Suresh S, Ramanand A, Jayaraman D, Mani P (2012) Review on theoretical aspect of nonlinear optics. Rev Adv Mater Sci 30:175–183

    CAS  Google Scholar 

  33. Geskin VM, Lambert C, Brédas JL (2003) Origin of high second- and third-order nonlinear optical response in ammonio/borato diphenylpolyene zwitterions: the remarkable role of polarized aromatic groups. J Am Chem Soc 125:15651–15658. https://doi.org/10.1021/ja035862p

    Article  CAS  PubMed  Google Scholar 

  34. Abbotto A, Beverina L, Manfredi N et al (2009) Second-order nonlinear optical activity of dipolar chromophores based on pyrrole-hydrazono donor moieties. Chem Eur J 15:6175–6185. https://doi.org/10.1002/chem.200900287

    Article  CAS  PubMed  Google Scholar 

  35. Waskasi MM, Hashemianzadeh SM, Mostajabi Sarhangi O, Harzandi AP (2012) Computational model of hydrogen production by coumarin-dye-sensitized water splitting to absorb the visible light in a local electric field. Energy Convers Manag 62:154–164. https://doi.org/10.1016/j.enconman.2012.03.014

    Article  CAS  Google Scholar 

  36. Day PN, Pachter R, Nguyen KA (2014) Analysis of nonlinear optical properties in donor-acceptor materials. J Chem Phys 140:184308. https://doi.org/10.1063/1.4874267

    Article  CAS  PubMed  Google Scholar 

  37. Ravikumar C, Joe IH, Jayakumar VS (2008) Charge transfer interactions and nonlinear optical properties of push-pull chromophore benzaldehyde phenylhydrazone: a vibrational approach. Chem Phys Lett 460:552–558. https://doi.org/10.1016/j.cplett.2008.06.047

    Article  CAS  Google Scholar 

  38. Rajeshirke M, Sekar N (2018) NLO properties of ester containing fluorescent carbazole based styryl dyes—consolidated spectroscopic and DFT approach. Opt Mater (Amst) 76:191–209. https://doi.org/10.1016/j.optmat.2017.12.035

    Article  CAS  Google Scholar 

  39. Mabkhot YN, Al-Showiman SS, Barakat A et al (2019) Computational studies of 2-(4-oxo-3-phenylthiazolidin-2-ylidene)malononitrile. BMC Chem 13:25. https://doi.org/10.1186/s13065-019-0542-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Rouhani M (2018) Full structural analysis of steviol: a DFT study. J Mol Struct 1173:679–689. https://doi.org/10.1016/j.molstruc.2018.07.029

    Article  CAS  Google Scholar 

  41. Xavier S, Periandy S, Ramalingam S (2015) NBO, conformational, NLO, HOMO-LUMO, NMR and electronic spectral study on 1-phenyl-1-propanol by quantum computational methods. Spectrochim Acta A 137:306–320. https://doi.org/10.1016/j.saa.2014.08.039

    Article  CAS  Google Scholar 

  42. Jamróz MH (2013) Vibrational energy distribution analysis (VEDA): scopes and limitations. Spectrochim Acta A 114:220–230. https://doi.org/10.1016/j.saa.2013.05.096

    Article  CAS  Google Scholar 

  43. Levin R (1970) Stereochemistry and structure proof of (78)-cis-cis-nepetalactones and related compounds. Oklahoma State University, Stillwater

    Google Scholar 

  44. Sim J, Yoon I, Yun H et al (2016) Divergent synthetic route to new cyclopenta[c]pyran iridoids: syntheses of jatamanin A, F, G and J, gastrolactone and nepetalactone. Org Biomol Chem. https://doi.org/10.1039/c5ob02147b

    Article  PubMed  Google Scholar 

  45. Marcela P, Lilana B, Ioan B, Dan M (2006) The essential oils of Nepeta L. genus (Lamiaceae, Nepetoideae) in Romania. In: 4th conference on medicinal and aromatic plants of south east European countries. pp 203–209

  46. Yoon I (2015) Divergent syntheses of iridoid natural products

  47. Suemune H, Oda K, Saeki S, Sakai K (1988) A new conversion method from (–)-limonene to nepetalactones. Chem Pharm Bull 36 (1), 172–177. https://doi.org/10.1248/cpb.36.172

    Article  Google Scholar 

  48. Dmitrović S, Skorić M, Boljević J et al (2016) Elicitation effects of a synthetic 1,2,4,5-tetraoxane and a 2,5-diphenylthiophene in shoot cultures of two Nepeta species. J Serb Chem Soc. https://doi.org/10.2298/JSC160226054D

    Article  Google Scholar 

  49. Wang M, Cheng KW, Wu Q, Simon JE (2007) Quantification of nepetalactones in catnip (Nepeta cataria L.) by HPLC coupled with ultraviolet and mass spectrometric detection. Phytochem Anal. https://doi.org/10.1002/pca.965

    Article  PubMed  Google Scholar 

  50. Ciaccio JA, Alam R, D’Agrosa CD et al (2013) Isolation and identification of nepetalactone diastereomers from commercial samples of Nepeta cataria L. (Catnip): an introductory organic laboratory experiment. J Chem Educ 90:646–650. https://doi.org/10.1021/ed300348k

    Article  CAS  Google Scholar 

Download references

Funding

We thanks the Higher Education Commission of Pakistan [Grant No. 21-436 SRGP/R&D/HEC/2014] for their support.

Author information

Authors and Affiliations

Authors

Contributions

Both authors have equal contribution.

Corresponding author

Correspondence to Syed Lal Badshah.

Ethics declarations

Conflict of interest

The authors have no competing interests.

Research involving human and/or animal participants

In this work no animal or human studies was conducted and it obeys all the ethical rules.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 27 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Badshah, S.L., Jehan, R. Density-functional theory of the catnip molecule, nepetalactone. Mol Cell Biochem 477, 1139–1153 (2022). https://doi.org/10.1007/s11010-022-04366-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-022-04366-8

Keywords

Navigation