Skip to main content
Log in

A new four-dimensional ab initio potential energy surface and predicted infrared spectra for the He–CS2 complex

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

We present a new four-dimensional ab initio potential energy surface for He–CS2 that is constructed at the coupled cluster and doubles with noniterative inclusion of connected triple [CCSD(T)] level with augmented correlation-consistent quadruplet-zeta (aug-cc-pVQZ) basis set plus midpoint bond functions. The \(Q_{1}\) and \(Q_{3}\) normal modes for the \(\nu_{1}\) symmetric stretching vibration and \(\nu_{3}\) antisymmetric stretching vibration of CS2 are involved in the construction of the He–CS2 potential. Two vibrationally averaged potentials with CS2 at the vibrational ground and the \(\nu_{1} \text{ + }\nu_{3}\) excited states are generated from the integration of the four-dimensional potential over the \(Q_{1}\) and \(Q_{3}\) coordinates. Each potential is found to have a T-shaped global minimum. The radial discrete variable representation/angular finite basis representation method is employed to calculate the rovibrational states without separating the inter- and intramolecular vibrations. The calculated shift of band origin (0.2270 cm−1) agrees well with the experimental value (0.2278 cm−1). The frequencies and line intensities of the rovibrational transitions in the \(\nu_{1} \text{ + }\nu_{3}\) region of CS2 for the vdW vibrational ground state are also in good agreement with the observed infrared spectra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Steed JM, Dixion TA, Klemperer W (1979) J Chem Phys 70:4095

    Article  CAS  Google Scholar 

  2. Randall RW, Walsh MA, Howard BJ (1988) Faraday Discuss Chem Soc 85:13

    Article  CAS  Google Scholar 

  3. Fraser GT, Pine AS, Suenram RD (1988) J Chem Phys 88:6157

    Article  CAS  Google Scholar 

  4. Pine AS, Fraser GT (1988) J Chem Phys 89:100

    Article  CAS  Google Scholar 

  5. Iida M, Ohsbima Y, Endo Y (1993) J Phys Chem 97:357

    Article  CAS  Google Scholar 

  6. Weida MJ, Sperhac JM, Nesbitt DJ (1994) J Chem Phys 101:8351

    Article  CAS  Google Scholar 

  7. Xu YJ, Jäger W (1998) J Mol Spectrosc 192:435

    Article  CAS  Google Scholar 

  8. Konno T, Fukuda S, Ozaki Y (2006) Chem Phys Lett 421:421

    Article  CAS  Google Scholar 

  9. Mivehvar F, Lauzin C, McKellar ARW, Moazzen-Ahmadi N (2012) J Mol Spectrosc 281:24

    Article  CAS  Google Scholar 

  10. Ogata T, Lovas FJ (1993) J Mol Spectrosc 162:505

    Article  CAS  Google Scholar 

  11. Peebles SA, Sun L, Kuczkowski RL (1999) J Chem Phys 110:6804

    Article  CAS  Google Scholar 

  12. Novick SE, Suenram RD, Lovas FJ (1988) J Chem Phys 88:687

    Article  CAS  Google Scholar 

  13. Parker GA, Keil M, Kuppermann A (1983) J Chem Phys 78:1145

    Article  CAS  Google Scholar 

  14. Keil M, Parker GA (1985) J Chem Phys 82:1947

    Article  CAS  Google Scholar 

  15. Beneventi L, Casavecchia P, Vecchiocattivi F, Volpi GG, Buck U, Lauenstein C, Schinke R (1988) J Chem Phys 89:4671

    Article  CAS  Google Scholar 

  16. Parker GA, Snow RL, Pack RT (1976) J Chem Phys 64:1668

    Article  CAS  Google Scholar 

  17. Roche CF, Ernesti A, Huston JM, Dickinson AS (1996) J Chem Phys 104:2156

    Article  CAS  Google Scholar 

  18. Marshall PJ, Szczesniak MM, Sadlej J, Chalasinski G, ter Horst MA, Jameson CJ (1996) J Chem Phys 104:6569

    Article  CAS  Google Scholar 

  19. Hutson JM, Ernesti AM, Law M, Roche CF, Wheatley RJ (1996) J Chem Phys 105:9130

    Article  CAS  Google Scholar 

  20. Yan GS, Yang MH, Xie DQ (1998) J Chem Phys 109:10284

    Article  CAS  Google Scholar 

  21. Negri F, Ancliotto F, Mistura G, Toigo F (1999) J Chem Phys 111:6439

    Article  CAS  Google Scholar 

  22. Ran H, Xie DQ (2008) J Chem Phys 128:124323

    Article  Google Scholar 

  23. Cui YL, Ran H, Xie DQ (2009) J Chem Phys 130:224311

    Article  Google Scholar 

  24. Farrokhpour H, Tozihi M (2013) Mol Phys 111:779

    Article  CAS  Google Scholar 

  25. Yuan T, Zhu H (2014) Theor Chem Acc 133:1537

    Article  Google Scholar 

  26. Yuan T, Sun XL, Hu Y, Zhu H (2014) J Chem Phys 141:104306

    Article  Google Scholar 

  27. Zang LM, Dai W, Zheng LM, Duan CX, Lu YP, Yang MH (2014) J Chem Phys 140:114310

    Article  Google Scholar 

  28. Chalasinski G, Szczesniak MM (2000) Chem Rev 100:4227

    Article  CAS  Google Scholar 

  29. Xie DQ, Ran H, Zhou YZ (2007) Int Rev Phys Chem 26:487

    Article  CAS  Google Scholar 

  30. Li H, Le Roy RJ (2008) Phys Chem Chem Phys 10:4128

    Article  CAS  Google Scholar 

  31. Li H, Blinov N, Roy P-N, Le Roy RJ (2009) J Chem Phys 130:144305

    Article  Google Scholar 

  32. Jiang H, Xu MZ, Hutson JM, Bacic Z (2005) J Chem Phys 123:054305

    Article  Google Scholar 

  33. Moszynski R, Jeziorski B, Wormer PES (1994) Chem Phys Lett 221:161

    Article  CAS  Google Scholar 

  34. Meuwly M, Hutson JM (2003) J Chem Phys 119:8873

    Article  CAS  Google Scholar 

  35. Besnard M, Cabaço MI, Coutinho JAP, Danten Y (2013) J Chem Phys 139:124504

    Article  CAS  Google Scholar 

  36. Montero S (1983) J Chem Phys 79:4091

    Article  CAS  Google Scholar 

  37. Bier KD, Jodl HJ (1987) J Chem Phys 86:4406

    Article  CAS  Google Scholar 

  38. Echave J, Clary DC (1992) Chem Phys Lett 190:225

    Article  CAS  Google Scholar 

  39. Wei H, Carrington T (1992) J Chem Phys 97:3029

    Article  CAS  Google Scholar 

  40. Wells JS, Schneider M, Maki AG (1988) J Mol Spectrosc 132:422

    Article  CAS  Google Scholar 

  41. Raghavachari K, Trucks GW, Pople JA, Head-Gordon M (1989) Chem Phys Lett 157:479

    Article  CAS  Google Scholar 

  42. Bowman JM, Gazdy B (1991) J Chem Phys 94:816

    Article  CAS  Google Scholar 

  43. Woon DE, Dunning TH (1993) J Chem Phys 98:1358

    Article  CAS  Google Scholar 

  44. Pedersen TB, Fernandez B, Koch H, Makarewicz J (2001) J Chem Phys 115:8431

    Article  CAS  Google Scholar 

  45. Boys SF, Bernardi F (1970) Mol Phys 19:553

    Article  CAS  Google Scholar 

  46. Werner HJ, Knowles PJ, Amos RD et al (2000) MOLPRO, version 2000.1, a package of ab initio programs. http://www.molpro.net

  47. Tennyson J, Sutcliffe BT (1984) Mol Phys 51:887

    Article  CAS  Google Scholar 

  48. Miller S, Tennyson J (1988) J Mol Spectrosc 128:132530

    Article  Google Scholar 

  49. Lin SY, Guo H (2002) J Chem Phys 117:5183

    Article  CAS  Google Scholar 

  50. Chen RQ, Ma GB, Guo H (2000) Chem Phys Lett 320:567

    Article  CAS  Google Scholar 

  51. Colbert DT, Miller WH (1992) J Chem Phys 96:1982

    Article  CAS  Google Scholar 

  52. Lanczos CJ (1950) Res Natl Bur Stand 45:255

    Article  Google Scholar 

  53. Yu HG (2002) J Chem Phys 117:8190

    Article  CAS  Google Scholar 

  54. Paesani F, Whaley KB (2004) J Chem Phys 121:4180

    Article  CAS  Google Scholar 

  55. Watson JKG (1967) J Chem Phys 46:1935

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 21373139).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua Zhu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shang, J., Yuan, T. & Zhu, H. A new four-dimensional ab initio potential energy surface and predicted infrared spectra for the He–CS2 complex. Theor Chem Acc 135, 1 (2016). https://doi.org/10.1007/s00214-015-1755-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-015-1755-y

Keywords

Navigation