Skip to main content

Advertisement

Log in

Assessing the reliability of van der Waals DFT functionals to study the physisorption of molecular hydrogen on aromatic systems

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The physisorption of \(\hbox {H}_2\) on organic molecules has received much attention during the 2000s, because they are the elementary bricks of the organic linkers in isoreticular metal–organic frameworks, materials that are considered as very promising ones for hydrogen storage. Here, we have studied the physisorption of \(\hbox {H}_2\) on a wide variety of aromatic molecules, from pure and substituted benzene to polycyclic hydrocarbons, by means of density functional theory (DFT). In performing DFT calculations, we have taken of the relatively new family of functionals that include van der Waals (vdW) effects. We have performed our calculations with two different approaches: (1) the one proposed by Grimme et al. (J Chem Phys 132:154104, 2011), DFT+D3, which corrects the total energy; (2) the one proposed by Lundqvist et al. (Phys Rev B 82:081101, 2010), vdW+DF2, which corrects the correlation energy. From the comparison between our DFT vdW energies and the ones obtained by means of ab initio theory methods [MP2 and CCSD(T)], we conclude that DFT in combination with the vdW+DF2 functional yields reliable binding energies of \(\hbox {H}_2\) to aromatic complexes, at a much smaller computational cost. Hopefully, our results will stimulate further studies on these kinds of systems, which have been hampered due to limited computational resources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Hamel S, Côté M (2004) J Chem Phys 121:12618–12625

    Article  CAS  Google Scholar 

  2. Hübner O, Glöss A, Fichtner M, Klopper W (2004) J Phys Chem A 108:3019–3023

    Article  Google Scholar 

  3. Sagara T, Klassen J, Ganz E (2004) J Chem Phys 121:12543–12547

    Article  CAS  Google Scholar 

  4. Tran F, Weber J, Wesolowski TA, Cheikh F, Ellinger Y, Pauzat F (2004) J Phys Chem B 106:8689–8996

    Article  Google Scholar 

  5. Buda C, Dunietz BD (2006) J Phys Chem B 110:10479–10484

    Article  CAS  Google Scholar 

  6. Heine T, Zhechkov J, Seifert G (2004) Phys Chem Chem Phys 6:980–984

    Article  CAS  Google Scholar 

  7. Rosi NL, Eckert J, Eddaoudi M, Vodak DT, Kim J, O’Keeffe M, Yaghi OM (2003) Science 300:1127–1129

    Article  CAS  Google Scholar 

  8. Rowsell JLC, Millward AR, Park KS, Yaghi OM (2004) J Am Chem Soc 126:5666–5667

    Article  CAS  Google Scholar 

  9. Yildirim T, Hartman MR (2005) Phys Rev Lett 95:215504

    Article  CAS  Google Scholar 

  10. Panella B, Hirscher M (2005) Adv Mater 17:538–541

    Article  CAS  Google Scholar 

  11. Deng H, Doonan CJ, Furukawa H, Ferreira RB, Towne J, Knobler CB, Wang B, Yaghi OA (2005) Science 327:846–849

    Article  Google Scholar 

  12. Furukawa H, Ko N, Go YB, Aratani A, Choi SB, Choi E, Yazaydin AÖ, Snurr RQ, O’Keeffe M, Kim J, Yaghi OA (2010) Science 329:424

    Article  CAS  Google Scholar 

  13. Yan Y, Yang S, Blake AJ, Schröder M (2010) Acc Chem Rec 47:296

    Article  Google Scholar 

  14. Weigend F, Häser M (1997) Theor Chem Acc 97:331–340

    Article  CAS  Google Scholar 

  15. Sagara T, Klassen J, Ortony J, Ganz E (2005) J Chem Phys 123:014701

    Article  Google Scholar 

  16. Yeamin Md b, Fagina-Lago N, Alberti A, Cuesta IG, Sánchez-Marín J, de Merás AMJ Sánchez (2014) RSC Adv 4:54447

    Article  CAS  Google Scholar 

  17. Grimme S (2004) J Comput Chem 25:1463–1473

    Article  CAS  Google Scholar 

  18. Grimme S (2006) J Comput Chem 27:1787–1799

    Article  CAS  Google Scholar 

  19. Grimme S, Antony J, Ehrlich S, Krieg H (2011) J Chem Phys 132:154104

    Article  Google Scholar 

  20. Tkatchenko A, Scheffler M (2009) Phys Rev Lett 102:073005

    Article  Google Scholar 

  21. Tkatchenko A, DiStasio RA Jr, Car R, Scheffler M (2012) Phys Rev Lett 108:236402

    Article  Google Scholar 

  22. Dion M, Rydberg H, Schröder E, Langreth DC, Lundqvist BI (2004) Phys Rev Lett 92:246401

    Article  CAS  Google Scholar 

  23. Lee K, Murray ÉD, Kong L, Lundqvist BI, Langreth DC (2010) Phys Rev B 82:081101

    Article  Google Scholar 

  24. Klimes J, Bowler DR, Michaelides A (2010) J Phys Condens Matter 22:022201

    Article  Google Scholar 

  25. Klimes J, Bowler DR, Michaelides A (2011) Phys Rev B 83:195131

    Article  Google Scholar 

  26. Stradi S, Barja S, Díaz C, Garnica M, Borca B, Hinarejos JJ, Sánchez-Portal D, Alcamí M, Arnau A, Vázquez de Parga AL, Miranda R, Martín F (2011) Phys Rev Lett 106:186102

    Article  CAS  Google Scholar 

  27. Zhao W, Kozlov AM, Höfert O, Cotterbarm K, Lorentz MPA, Viñes F, Papp C, Görling A, Steinrüch HP (2011) J Phys Chem Lett 2:759–764

    Article  CAS  Google Scholar 

  28. Chakarova-Käck SD, Schröder E, Lundqvist RI, Langreth DC (2006) Phys Rev Lett 96:146107

    Article  Google Scholar 

  29. Akesson J, Sundborg O, Wahlström O, Schröder E (2012) J Chem Phys 137:174702

    Article  Google Scholar 

  30. Johnston K, Kleis J, Lundqvist RI, Nieminen RM (2008) Phys Rev B 77:121404

    Article  Google Scholar 

  31. Prates Ramalho JP, Illas F (2012) Chem Phys Lett 545:60–65

    Article  CAS  Google Scholar 

  32. Mercurio G, McNellis ER, Martin I, Hagen S, Leyssner F, Soubatch S, Meyer J, Wolf M, Tegeder P, Tautz FS, Reuter K (2010) Phys Rev Lett 104:036102

    Article  CAS  Google Scholar 

  33. Li G, Tamblyn J, Cooper VR, Gao HJ, Neaton JB (2012) Phys Rev B 85:121409

    Article  Google Scholar 

  34. Minniti M, Díaz C, Fernández Cuñado JL, Politano A, Maccariello D, Martín F, Farías D, Miranda R (2012) J Phys Condens Matter 24:354002

    Article  CAS  Google Scholar 

  35. Silvestrelli PL, Ambrosetti A, Grubisic S, Ancilotto F (2012) Phys Rev B 85:165405

    Article  Google Scholar 

  36. Chem DL, Al-Saidi WA, Johnson JK (2012) J Phys Condens Matter 24:424211

    Article  Google Scholar 

  37. Berland K, Cooper VR, Lee K, Schröder E, Thonhauser T, Hyldgaard P, Lundqvist BI (2015) Rep Prog Phys 78:066501

    Article  Google Scholar 

  38. Prates Ramalho JP, Gomes JRB, Illas F (2013) RSC Adv 3:13085–13100

    Article  Google Scholar 

  39. Kresse G, Hafner J (1993) Phys Rev B 47:558–561

    Article  CAS  Google Scholar 

  40. Kresse G, Furthmüller J (1996) Phys Rev B 54:11169–11186

    Article  CAS  Google Scholar 

  41. Kresse G, Joubert D (1999) Phys Rev B 59:1758–1775

    Article  CAS  Google Scholar 

  42. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865

    Article  CAS  Google Scholar 

  43. Perdew JP, Wang Y (1986) Phys Rev B 33:8800(R)–8802(R)

    Article  Google Scholar 

  44. Elliot P, Burke K (2009) Can J Chem 87:1485

    Article  Google Scholar 

  45. Blöchl PE (1994) Phys Rev B 50:17953–17979

    Article  Google Scholar 

  46. Bachau H, Cormier E, Decleva P, Hansen JE, Martín F (2001) Rep Prog Phys 64:1815–1943

    Article  CAS  Google Scholar 

  47. Darvish-Ganji M, Hosseini-Khah SM, Amini-Tabar Z (2015) Phys Chem Chem Phys 17:2504–2511

    Article  CAS  Google Scholar 

  48. Arellano JS, Molina LM, Rubio A, Alonso JA (2000) J Chem Phys 112:8114–8119

    Article  CAS  Google Scholar 

  49. Vidali G, Ihm G, Kim HY, Cole MW (1991) Surf Sci Rep 12:133–181

    Article  CAS  Google Scholar 

  50. Mattera L, Rosattelli F, salvo C, Tommasini F, Valbusa U, Vidali C (1980) Surf Sci 93:515–525

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author thanks CCC-UAM for allocation of computer time, and the “Ramón y Cajal” program of the MICINN. Work supported by MICINN project No. FIS2013-42002-R

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristina Díaz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Díaz, C. Assessing the reliability of van der Waals DFT functionals to study the physisorption of molecular hydrogen on aromatic systems. Theor Chem Acc 134, 105 (2015). https://doi.org/10.1007/s00214-015-1712-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-015-1712-9

Keywords

Navigation