Skip to main content

Advertisement

Log in

Steric and electrostatic effects on photoisomerization dynamics using QM/MM ab initio multiple spawning

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Photoisomerization of conjugated systems is a common pathway for photomechanical energy conversion in biological chromophores. There are many examples where the local environment of the chromophore plays an important role in determining the outcome of photoisomerization. We have investigated the effect of simple steric and electrostatic environments on the excited-state photodynamics of ethylene, a simple model for larger conjugated systems. Ab initio electronic structure methods were combined with molecular mechanical force fields to describe the ground and excited-state potential energy surfaces of ethylene embedded in electrostatic and steric environments. The time evolution of the system following photoabsorption was modeled using the ab initio multiple spawning (AIMS) method for quantum dynamics. We introduce a new method for integration of the equations of motion in AIMS, which detects conical intersections automatically and then decreases the timestep adaptively around them. Neither steric hindrance nor electrostatics have a large effect on the excited-state lifetime, even at effective pressures as large as 2 GPa. However, a nearby point charge creates an electric field that stabilizes one of two symmetry-related conical intersections, biasing the reaction toward a particular photoisomerization pathway. For the larger tetramethylethylene, where steric hindrance is expected to be more pronounced, we also see no effect on the excited-state lifetime. Our results suggest that electrostatic interactions are more effective than steric hindrance in modifying the course of excited-state reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Yarkony DR (1996) Diabolical conical intersections. Rev Mod Phys 68:985

    Article  CAS  Google Scholar 

  2. Yarkony DR (1998) Conical intersections: diabolical and often misunderstood. Acc Chem Res 31:511

    Article  CAS  Google Scholar 

  3. Bernardi F, Olivucci M, Robb MA (1996) Potential energy surface crossings in organic photochemistry. Chem Soc Rev 25:321

    Article  CAS  Google Scholar 

  4. Klessinger M, Michl J (1995) Excited states and photochemistry of organic molecules. VCH Publishers Inc, New York

    Google Scholar 

  5. Levine BG, Martinez TJ (2007) Isomerization through conical intersections. Ann Rev Phys Chem 58:613

    Article  CAS  Google Scholar 

  6. Virshup AM, Punwong C, Pogorelov TV, Lindquist B, Ko C, Martínez TJ (2009) Photodynamics in complex environments: ab initio multiple spwaning quantum mechanical/molecular mechanical dynamics. J Phys Chem B 113:3280

    Article  CAS  Google Scholar 

  7. Groenhof G, Schäfer LV, Boggio-Pasqua M, Grubmüller H, Robb MA (2008) Arginine52 controls the photoisomerization process in photoactive yellow protein. J Am Chem Soc 130:3250

    Article  CAS  Google Scholar 

  8. Ko C, Virshup AM, Martínez TJ (2008) Electrostatic control of the photoisomerization in the photoactive yellow protein chromophore: hybrid QM/MM ab initio multiple spawning simulation. Chem Phys Lett 460:272

    Article  CAS  Google Scholar 

  9. Cembran A, Bernardi F, Olivucci M, Garavelli M (2004) Counterion controlled photoisomerization of retinal chromophore models: a computational investigation. J Am Chem Soc 126:16018

    Article  CAS  Google Scholar 

  10. Altoe P, Bernardi F, Garavelli M, Orlandi G, Negri F (2005) Solvent effects on the vibrational activity and photodynamics of the green fluorescent protein chromophore: a quantum chemical study. J Am Chem Soc 127:3952

    Article  CAS  Google Scholar 

  11. Cembran A, Bernardi F, Olivucci M, Garavelli M (2005) The retinal chromophore/chloride ion pair: structure of the photoisomerization path and interplay of charge transfer and covalent states. Proc Natl Acad Sci 102:6255

    Article  CAS  Google Scholar 

  12. Olsen S, Toniolo A, Ko C, Manohar L, Lamothe K, Martinez TJ (2005) Computation of reaction mechanisms and dynamics in photobiology. In: Olivucci M (ed) Computational photochemistry. Elsevier, Amsterdam

    Google Scholar 

  13. Toniolo A, Olsen S, Manohar L, Martinez TJ (2004) Conical intersection dynamics in solution: the chromophore of green fluorescent protein. Faraday Discus 127:149

    Article  CAS  Google Scholar 

  14. Martínez TJ (2006) Insights for light-driven molecular devices from ab initio multiple spawning excited-state dynamics of organic and biological chromophores. Acc Chem Res 39:119

    Article  Google Scholar 

  15. Vallee BL, Williams RJP (1968) Metalloenzymes: the entatic nature of their active sites. Proc Natl Acad Sci 59:498

    Article  CAS  Google Scholar 

  16. Lightstone FC, Bruice TC (1996) Ground state conformations and entropic and enthalpic factors in the efficiency of intramolecular and enzymatic reactions. 1. Cyclic anhydride formation by substituted glutarates, succinate, and 3,6-Endoxo-Δ4-tetrahydrophthalate monophenyl ester. J Am Chem Soc 118:2595

    Article  CAS  Google Scholar 

  17. Ford L, Johnson L, Machin P, Phillips D, Tijian R (1974) Crystal structure of lysozyme-tetrasaccharide lactone complex. J Mol Bio 88:349

    Article  CAS  Google Scholar 

  18. Ryde U, Olsson MHM, Pierloot K, Roos BO (1996) The cupric geometry of blue copper proteins is not strained. J Mol Bio 261:586

    Article  CAS  Google Scholar 

  19. Shurki A, Štrajbl M, Villa J, Warshel A (2002) How much do enzymes really gain by restraining fragments? J Am Chem Soc 124:4097

    Article  CAS  Google Scholar 

  20. Warshel A (2003) Computer simulations of enzyme catalysis: methods, progress and insights. Ann Rev Biophys Biomol Struct 32:425

    Article  CAS  Google Scholar 

  21. Warshel A, Sharma PK, Kato M, Parson WW (2006) Modeling electrostatic effects in proteins. Biochim Biophys Acta 1764:1647

    Article  CAS  Google Scholar 

  22. Suydam IT, Snow CD, Pande VS, Boxer SG (2006) Electric fields at the active site of an enzyme: direct comparison of experiment with theory. Science 313:200

    Article  CAS  Google Scholar 

  23. Ben-Nun M, Martínez TJ (2000) Photodynamics of ethylene: ab initio studies of conical intersections. Chem Phys 259:237

    Article  CAS  Google Scholar 

  24. Quenneville J, Martínez T (2003) Ab initio study of cis-trans photoisomerization in stilbene and ethylene. J Phys Chem, 107A

  25. Barbatti M, Paier J, Lischka H (2004) Photochemistry of ethylene: a multireference configuration interaction investigation of the excited-state energy surfaces. J Chem Phys 121:11614

    Article  CAS  Google Scholar 

  26. Barbatti M, Ruckenbauer M, Lischka H (2005) The photodynamics of ethylene: a surface-hopping study on structural aspects. J Chem Phys 122:174307

    Article  CAS  Google Scholar 

  27. Tao H, Levine BG, Martinez TJ (2009) Ab initio multiple spawning dynamics using multi-state second-order perturbation theory. J Phys Chem A 113:13656

    Article  CAS  Google Scholar 

  28. Mori T, Glover WJ, Schuurman MS, Martinez TJ (2012) Role of Rydberg States in the photochemical dynamics of ethylene. J Phys Chem A 116:2808

    Article  CAS  Google Scholar 

  29. Mestdagh JM, Visticot JP, Elhanine M, Soep B (2000) Prereactive evolution of monoalkenes excited in the 6 eV region. J Chem Phys 113:237

    Article  CAS  Google Scholar 

  30. Farmanara P, Stert V, Radloff W (1998) Ultrafast internal conversion and fragmentation in electronically excited C2H4 and C2H3Cl molecules. Chem Phys Lett 288:518

    Article  CAS  Google Scholar 

  31. Tao H, Allison TK, Wright TW, Stooke AM, Khurmi C, Tilborg JV, Liu Y, Falcone RW, Belkacem A, Martinez TJ (2011) Ultrafast internal conversion in ethylene. I. The excited state lifetime. J Chem Phys 134:244306

    Article  CAS  Google Scholar 

  32. Sension RJ, Hudson BS (1989) Vacuum ultraviolet resonance Raman studies of the excited electronic states of ethylene. J Chem Phys 90:1377

    Article  CAS  Google Scholar 

  33. Brooks BR, Schaefer IHF (1979) Sudden polarization: pyramidalization of twisted ethylene. J Am Chem Soc 101:307

    Article  CAS  Google Scholar 

  34. Bonacic-Koutecky V, Bruckmann P, Hiberty P, Koutecky J, Leforestier C, Salem L (1975) Sudden Polarization in the Zwitterionic Z1 excited states of organic intermediates Photochemical implications. Ang Chem 14:575

    Article  Google Scholar 

  35. Bonacic-Koutecky V (1978) Sudden polarization in zwitterionic excited states of organic intermediates in photochemical reactions. On a possible mechanism for bicyclo[3.1.0]hex-2-ene formation. J Am Chem Soc 100:396

    Article  CAS  Google Scholar 

  36. Bonacic-Koutecky V, Koutecky J, Michl J (1987) Neutral and charged Biradicals, Zwitterions, funnels in S1, and proton translocation: their role in photochemistry, photophysics, and vision. Ang Chem 26:170

    Article  Google Scholar 

  37. Barbatti M, Granucci G, Persico M, Lischka H (2004) Semiempirical molecular dynamics investigation of the excited state lifetime of ethylene. Chem Phys Lett 401:276

    Article  Google Scholar 

  38. Ben-Nun M, Martínez TJ (1998) Ab initio molecular dynamics study of cis-trans photoisomerization in ethylene. Chem Phys Lett 298:57

    Article  CAS  Google Scholar 

  39. Warshel A, Levitt M (1976) Theoretical studies of enzymic reactions: dielectric, electrostatic and steric stabilization of the carbonium ion in the reaction of lysozyme. J Mol Biol 103:227

    Article  CAS  Google Scholar 

  40. Hu H, Yang W (2008) Free energies of chemical reactions in solution and in enzymes with ab initio quantum mechanics/molecular mechanics methods. Ann Rev Phys Chem 59:573

    Article  CAS  Google Scholar 

  41. Zhang Y, Liu H, Yang W (2000) Free energy calculation on enzyme reactions with an efficient iterative procedure to determine minimum energy paths on a combined ab initio QM/MM potential energy surface. J Chem Phys 112:3483

    Article  CAS  Google Scholar 

  42. Field M, Bash P, Karplus M (1990) A combined quantum mechanical and molecular mechanical potential for molecular dynamics simulations. J Comp Chem 11:700

    Article  CAS  Google Scholar 

  43. Friesner RA, Guallar V (2005) Ab initio quantum chemical and mixed quantum mechanics/molecular mechanics (QM/MM) methods for studying enzymatic catalysis. Ann Rev Phys Chem 56:389

    Article  CAS  Google Scholar 

  44. Senn HM, Thiel W (2009) QM/MM methods for biomolecular systems. Ang Chem Int Ed 48:1198

    Article  CAS  Google Scholar 

  45. Slavicek P, Martinez TJ (2006) Multicentered valence electron effective potentials: solution to the link atom problem for ground and excited electronic states. J Chem Phys 124:084107

    Article  Google Scholar 

  46. Ben-Nun M, Martinez TJ (1998) Direct evaluation of the Pauli repulsion energy using ‘classical’ wavefunction in hybrid quantum/classical potential energy surfaces. Chem Phys Lett 290:289

    Article  CAS  Google Scholar 

  47. Maitland GC, Smith EB (1971) The intermolecular pair potential of argon. Mol Phys 22:861

    Article  CAS  Google Scholar 

  48. Cornell W, Cieplak P, Bayly C, Gould I, Merz JK, Ferguson D, Spellmeyer D, Fox T, Caldwell J, Kollman P (1995) A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J Am Chem Soc 117:5179

    Article  CAS  Google Scholar 

  49. Roos BO (1987) The complete active space self-consistent field method and its applications in electronic structure calculations. In: Lawley KP (ed) Advances in chemical physics: ab initio methods in quantum chemistry II. Wiley, New York, p 399

    Chapter  Google Scholar 

  50. Docken K, Hinze J (1972) LiH potential curves and wave functions. J Chem Phys 57:4928

    Article  CAS  Google Scholar 

  51. Werner H-J, Knowles PJ, Lindh R, Schuetz M, Celani P, Korona T, Manby FR, Rauhut G, Amos RD, Bernhardsson A, Berning A, Cooper DL, Deegan MJO, Dobbyn AJ, Eckert F, Hampel C, Hetzer G, Lloyd AW, McNicholas SJ, Meyer W, Mura ME, Nicklass A, Palmieri P, Pitzer R, Schumann U, Stoll H, Stone AJ, Tarroni R, Thorsteinsson T MOLPRO, version, a package of ab initio programs

  52. Frisch M, Pople J, Binkley J (1984) Self-consistent molecular orbital methods. J Chem Phys 80:3265

    Article  CAS  Google Scholar 

  53. Ben-Nun M, Martínez T (2002) Ab initio quantum molecular dynamics. Adv Chem Phys, 121

  54. Ben-Nun M, Quenneville J, Martínez T (2000) Ab initio multiple spawning: photochemistry from first principles quantum molecular dynamics. J Phys Chem 104A:5161

    Article  Google Scholar 

  55. Heller E (1981) Frozen gaussians: a very simple semiclassical approximation. J Chem Phys 75:2923

    Article  CAS  Google Scholar 

  56. Levine BG, Coe JD, Virshup AM, Martínez TJ (2008) Implementation of ab initio multiple spawning in the MolPro quantum chemistry package. Chem Phys 347:3

    Article  CAS  Google Scholar 

  57. Fernandez-Alberti S, Roitberg AE, Nelson T, Tretiak S (2012) Identification of unavoided crossings in nonadiabatic photoexcited dynamics involving multiple electronic states in polyatomic conjugated molecules. J Chem Phys 137:014512

    Article  Google Scholar 

  58. Nelson T, Fernandez-Alberti S, Roitberg AE, Tretiak S (2013) Artifacts due to trivial unavoided crossings in the modeling of photoinduced energy transfer dynamics in extended conjugated molecules. Chem Phys Lett 590:208

    Article  CAS  Google Scholar 

  59. Wang L, Prezhdo OV (2014) A simple solution to the trivial crossing problem in surface hopping. J Phys Chem Lett 5:713

    Article  CAS  Google Scholar 

  60. Habershon S (2012) Linear dependence and energy conservation in Gaussian wave packet basis sets. J Chem Phys 136:014109

    Article  Google Scholar 

  61. Allen MP, Tildesley DJ (1987) Computer simulation of liquids. Oxford University Press, Oxford, p 385

    Google Scholar 

  62. Kutteh R (1998) RATTLE recipe for general holonomic constraints angle and torsion constraints. CCP5 Newslett, 46:9

  63. Hack MD, Wensmann AM, Truhlar DG, Ben-Nun M, Martinez TJ (2001) Comparison of full multiple spawning, trajectory surface hopping and converged quantum mechanics for electronically nonadiabatic dynamics. J Chem Phys 115:1172

    Article  CAS  Google Scholar 

  64. Efron R, Tibshirani R (1986) Bootstrap methods for standard errors, confidence intervals, and other measures of statistical accuracy. Stat Sci 1:54

    Article  Google Scholar 

  65. Connolly ML (1983) Solvent-accessible surfaces of proteins and nucleic acids. Science 221:709

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work has been supported by the NSF (OCI-10-47577 and CHE-11-24515) with computational support through DOE from the AMOS program within the Chemical Sciences, Geosciences and Biosciences Division of the Office of Basic Energy Sciences, Office of Science, US Department of Energy. We are pleased to dedicate this article to the memory of Isaiah Shavitt, who all the authors interacted with many times at UIUC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Todd J. Martínez.

Additional information

Dedicated to the memory of Professor Isaiah Shavitt and published as part of the special collection of articles celebrating his many contributions.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Virshup, A.M., Levine, B.G. & Martínez, T.J. Steric and electrostatic effects on photoisomerization dynamics using QM/MM ab initio multiple spawning. Theor Chem Acc 133, 1506 (2014). https://doi.org/10.1007/s00214-014-1506-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-014-1506-5

Keywords

Navigation