Skip to main content
Log in

The application of condensed matter methods to the study of the conformation and elastic properties of biopolymers and the transport of DNA through cell membranes

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The review draws on earlier interests of the authors and especially in two areas. The first of these consists of modelling polymers in different solvent conditions using Langevin molecular dynamics. For fully flexible polymers, it was found that in good solvents the polymer conformation had extended structure while in poor solvents, a globular-like conformation resulted. Stiffness in semi-flexible polymers allows for the description of a polymer with non-zero persistence length, thereby allowing biological polymers to be modelled. The second area focuses on the transport of DNA through cell membranes and in the related area of using molecular dynamics simulations in understanding biomolecular processes. Finally, under future directions, some of the areas in which techniques from condensed matter have been used in recent years point to how they may be employed in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Fersht A (1999) Structure and mechanism in protein science. W.H.Freeman, New York

    Google Scholar 

  2. Ramanathan S, Shakhnovich E (1994) Phys Rev E 50:1303

    Article  CAS  Google Scholar 

  3. Sfatos CD, Gutin AM, Shakhnovich EI (1994) Phys Rev E 50:2898

    Article  CAS  Google Scholar 

  4. Stillinger FH, Head-Gordon T (1995) Phys Rev E 52:2872

    Article  CAS  Google Scholar 

  5. Yue K, Dill KA (1993) Phys Rev E 48:2267

    Article  CAS  Google Scholar 

  6. Doniach S, Garel T, Orland H (1996) J Chem Phys 105:1601

    Article  CAS  Google Scholar 

  7. Doye JPK, Sear RP, Frenkel D (1998) J Chem Phys 108:2134

    Article  CAS  Google Scholar 

  8. Bastolla U, Grassberger P (1997) J Stat Phys 89:1061

    Article  Google Scholar 

  9. Noguchi H, Yoshikawa K (1998) J Chem Phys 109:5070

    Article  CAS  Google Scholar 

  10. Noguchi H, Yoshikawa K (1997) Chem Phys Lett 278:184

    Article  CAS  Google Scholar 

  11. Ivanov VA, Paul W, Binder K (1998) J Chem Phys 109:5659

    Article  CAS  Google Scholar 

  12. Lai PY (1998) Phys Rev E 58:6222

    Article  CAS  Google Scholar 

  13. Bustamante C, Marko JF, Siggia ED, Smith S (1994) Science 265:1599

    Article  CAS  Google Scholar 

  14. Tomasi J, Menucci B, Cammi R (2005) Chem Rev 105:2999

    Article  CAS  Google Scholar 

  15. Jalkanen KJ, Suhai S, Bohr HG (2009) In: Bohr HG (eds) Handbook of molecular biophysics methods and applications. WILEY-VCH, pp 1–66

  16. Jalkanen KJ, Suhai S (1996) Chem Phys 208:81

    Article  CAS  Google Scholar 

  17. Tajkhorshid E, Jalkanen KJ, Suhai S (1998) J Phys Chem B 102:5899

    Article  CAS  Google Scholar 

  18. Jalkanen KJ, Bohr HG, Suhai S (1997) Proceedings of the international symposium on theoretical and computational methods in genome research, (S Suhai). Plenum Press, New York pp 255–277

  19. Jalkanen KJ, Jurgensen VW, Claussen A, Rahim A, Jensen GM, Wade RC, Nardi F, Jung C, Degtyarenko IM, Nieminen RM, Herrmann F, Knapp-Mohammady M, Niehaus TA, Frimand K, Suhai S (2006) Int J Quantum Chem 106:1160

    Article  CAS  Google Scholar 

  20. Blokzijl W, Engberts Angew JBFN (1993) Chem Int Ed Engl 32:1545

    Article  Google Scholar 

  21. Chandler D (2005) Nature 437:640

    Article  CAS  Google Scholar 

  22. Rank JA, Baker D (1998) Biophys Chem 71:199

    Article  CAS  Google Scholar 

  23. Southall NT, Dill KA, Haymet ADJ (2002) J Phys Chem B 106:521

    Article  CAS  Google Scholar 

  24. Graziano G (2009) Chem Phys Lett 483:67

    Article  CAS  Google Scholar 

  25. Jonsson M, Skepo M, Linse P (2006) J Phys Chem B 110:8782

    Article  Google Scholar 

  26. Thomas AS, Elcock AH (2007) J Am Chem Soc 129:14887

    Article  CAS  Google Scholar 

  27. Maurice RG, Matthai CC (1999) Phys Rev E 60:3165

    Article  CAS  Google Scholar 

  28. Maurice RG (1999) PhD Thesis, Cardiff University, UK

  29. Flory F (1969) Statistical mechanics of chain molecules. Springer, New York

    Google Scholar 

  30. Cornell WD, Cieplak P, Bayly CJ, Gould IR, Merz KM, Ferguson DM, Spellmeyer DC, Fox T, Caldwell JW, Kollman PA (1995) J Am Chem Soc 117:5170

    Article  Google Scholar 

  31. Keating PN (1966) Phys Rev 145:637

    Article  CAS  Google Scholar 

  32. Grest GS, Kremer K (1986) Phys Rev A 33:3628

    Article  CAS  Google Scholar 

  33. Perkins TT, Smith DE, Larson RG, Chu S (1995) Science 286:83

    Article  Google Scholar 

  34. Smith SB, Finzi L, Bustamante C (1992) Science 258:1122

    Article  CAS  Google Scholar 

  35. Rief M, Pascual J, Saraste M, Gaub HE (1999) J Mol Biol 286:553

    Article  CAS  Google Scholar 

  36. Oesterhelt F, Rief M, Gaub HE (1999) New J Phys 1:6.1

    Article  Google Scholar 

  37. Ahsan A, Rucnick J, Bruisma R (1998) Biophys J 74:132

    Article  CAS  Google Scholar 

  38. Marko JF, Siggia E (1995) Macromolecules 28:209

    Article  Google Scholar 

  39. Bouchiat C, Wang MD, Allemand J-F, Strick T, Block SM, Croquette V (1999) Biophys J 76:409

    Article  CAS  Google Scholar 

  40. Wang MD, Yin H, Landick R, Gelles J, Block SM (1997) Biophys J 72:1335

    Article  CAS  Google Scholar 

  41. Wittkop M, Kreitmeier S, Goritz D (1996) Phys Rev E 53:838

    Article  CAS  Google Scholar 

  42. Kasianowicz JJ et al (1996) Proc Natl Acad Sci USA 93:13770

    Article  CAS  Google Scholar 

  43. Liu H, He J, Tang J, Liu H, Pang P, Cao D, Krstic P, Joseph S, Lindsay S, Nuckolls C (2010) Science 327:64–67

    Article  CAS  Google Scholar 

  44. Schneider GF, Kowalczyk SW, Calaldo VE, Pandraud G, Zandbergen HW, Vandersypen LMK, Dekker C (2010) Nano Lett 10:3163–3167

    Article  CAS  Google Scholar 

  45. Randel R, Loebl HC, Matthai CC (2004) Macromol Theory Simul 13:387–391

    Article  CAS  Google Scholar 

  46. Matthai CC, Loebl HC (2004) Advances in science and technology: modelling and simulating materials, Nanoworld, pp 337–344

  47. Kale L, Skeel R, Bhandarkar M, Brunner R, Gursoy A, Krawetz N, Phillips J, Shinozaki A, Varadarajan K, Schulten K (1999) J Comput Phys 151:283–312

    Article  CAS  Google Scholar 

  48. Brooks BR, Bruccoleri RE, Olafson BD, States DJ, Swaminathan S, Karplus M (1983) J Comp Chem 4:187–217

    Article  CAS  Google Scholar 

  49. Song 1L, M R Hobaugh, C Shustak, S Cheley, H Bayley, J E Gouaux (1996) Science 274:1859–1866

    Article  CAS  Google Scholar 

  50. Buch-Pedersen MJ, Pedersen BP, Veierskov B, Nissen P, Palmgren MG (2009) Pflugers Arch 457:573–579

    Article  CAS  Google Scholar 

  51. Meller A, Nivon L, Brandin E, Golovchenko J, Branton D (2000) Proc Natl Acad Sci USA 97:1079–84

    Article  CAS  Google Scholar 

  52. Hoogenraad NJ, Ward LA, Ryan MT (2002) BBA-Mol Cell Res 1592:97–105

    CAS  Google Scholar 

  53. Lodish H, Berk A, Zipursky SL, Matsudaira P, Baltimore D, Darnell J (2001) Molecular cell biology, 4th edn. W.H. Freeman and company, New York

    Google Scholar 

  54. Pfanner N, Truscott KN (2002) Nat Struct Biol 9:234

    Article  CAS  Google Scholar 

  55. Chacinska A, Pfanner N, Meisinger Chris (2002) TRENDS Cell Biol 12:299

    Article  CAS  Google Scholar 

  56. Pfanner N, Wiedmann N (2002) Curr Opin Struct Biol 14:400

    CAS  Google Scholar 

  57. Matouschek A, Glick BS (2001) Nat Struct Biol 8:284

    Article  CAS  Google Scholar 

  58. Okamoto K, Brinker A, Paschen SA, Moarefi I, Hayer-Hartl M, Neupert W, Brunner M (2002) EMBO 21:3659

    Article  CAS  Google Scholar 

  59. Simon SM, Peskin CS, Oster GF (1992) Proc Natl Acad Sci USA 89:3770

    Article  CAS  Google Scholar 

  60. Matouschek A, Pfanner N, Voos W (2000) EMBO reports 1:404

    Article  CAS  Google Scholar 

  61. Loebl HC, Matthai CC (2004) Physica 342:612–622

    Article  CAS  Google Scholar 

  62. Loebl HC, Randel R, Goodwin SP, Matthai CC (2003) Phys Rev E 67:041913

    Article  CAS  Google Scholar 

  63. Sakaue T, Yoshikawa K (2002) J Chem Phys 117:6323

    Article  CAS  Google Scholar 

  64. Bauer MF, Hofmann S, Neupert W, Brunner M (2001) TRENDS Cell Biol 10:25

    Article  Google Scholar 

  65. Serdyuk IN, Zaccai NR, Zaccai J (2007) Methods in molecular biophysics: structure–dynamics–function. Cambridge University Press, Cambridge

    Google Scholar 

  66. Zaccai G (2010) Acta Cryst D 66:1224

    Article  Google Scholar 

  67. Jasnin M, van Eijck L, Koza MM, Peters J, Laguri C, Lortat-Jacob H, Zaccai G (2010) Phys Chem Chem Phys 12:3360

    Article  CAS  Google Scholar 

  68. Dobson CM (2003) Nature 426:994

    Article  Google Scholar 

  69. Ma WJ, Hu CK (2010) J Phys Soc Japan 79:054001

    Article  Google Scholar 

  70. Neumann KC, Nagy A (2008) Nat Methods 5:491–505

    Article  Google Scholar 

  71. Abbondanzieri EA, Greenleaf WJ, Shaevitz JW, Landick R, Block SM (2005) Nature 438:460–465

    Article  CAS  Google Scholar 

  72. Grandbois MG, Beyer M, Rief M, Clausen-Schaumann H, Gaub HE (1999) Science 283:1727–1730

    Article  CAS  Google Scholar 

  73. Hohng S, Zhou R, Nahas MK, Yu J, Schulten K, Lilley DMJ, Ha T (2007) Science 318:279–283

    Article  CAS  Google Scholar 

  74. Cohen AE, Moerner WE (2006) Proc Natl Acad Sci USA 103:4362–4365

    Article  CAS  Google Scholar 

  75. Shafran E, Yaniv A, Krichevsky O (2010) Phys Rev Lett 104:128101

    Article  Google Scholar 

  76. March NH, Tosi MP (2002) Introduction to liquid state physics world scientific, Singapore

  77. Streets AM, Quake SR (2010) PRL 104:178102

    Article  Google Scholar 

  78. Wolde PRt, Frenkel D (1997) Science 277:1975

    Article  Google Scholar 

  79. Velikov PG, Pan W, Gliko O, Katsonis P, Galkin O (2008) Aspects of physical biology. Springer, Heidelberg, pp 65–95

    Google Scholar 

  80. Velikov PG (2007) Cryst Growth Des 7:2796–2810

    Article  Google Scholar 

  81. Lee MH, Avdoshenko S, Gutierrez R, Cuniberti G (2010) Phys Rev B 82:155455

    Article  Google Scholar 

Download references

Acknowledgments

One of us (NHM) acknowledges partial financial support from the University of Antwerp (UA) through BOF-NOI. Thanks are due to Professors D. Lamoen and C. Van Alsenoy for thereby continuing the affiliation of NHM with the UA. Finally, NHM completed his contribution during a stay at ICTP, Trieste. His thanks are due to Professor V.E.Krovtsov for generous hospitality at ICTP. Both authors also acknowledge the very useful comments of all the referees which has resulted in a much improved article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. C. Matthai.

Additional information

Dedicated to Professor Akira Imamura on the occasion of his 77th birthday and published as part of the Imamura Festschrift Issue.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matthai, C.C., March, N.H. The application of condensed matter methods to the study of the conformation and elastic properties of biopolymers and the transport of DNA through cell membranes. Theor Chem Acc 130, 1155–1167 (2011). https://doi.org/10.1007/s00214-011-1022-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-011-1022-9

Keywords

Navigation