Skip to main content
Log in

A non-symmetric coupling of the finite volume method and the boundary element method

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

As model problem we consider the prototype for flow and transport of a concentration in porous media in an interior domain and couple it with a diffusion process in the corresponding unbounded exterior domain. To solve the problem we develop a new non-symmetric coupling between the vertex-centered finite volume and boundary element method. This discretization provides naturally conservation of local fluxes and with an upwind option also stability in the convection dominated case. We aim to provide a first rigorous analysis of the system for different model parameters; stability, convergence, and a priori estimates. This includes the use of an implicit stabilization, known from the finite element and boundary element method coupling. Some numerical experiments conclude the work and confirm the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Aurada, M., Feischl, M., Führer, T., Karkulik, M., Melenk, J.M., Praetorius, D.: Classical FEM–BEM coupling methods: nonlinearities, well-posedness, and adaptivity. Comput. Mech. 51(4), 399–419 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bank, R.E., Rose, D.J.: Some error estimates for the box method. SIAM J. Numer. Anal. 24(4), 777–787 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  3. Brezzi, F., Johnson, C.: On the coupling of boundary integral and finite element methods. Calcolo 16(2), 189–201 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cai, Z.: On the finite volume element method. Numer. Math. 58(7), 713–735 (1991)

    MathSciNet  MATH  Google Scholar 

  5. Chatzipantelidis, P.: Finite volume methods for elliptic PDE’s: a new approach. M2AN. Math. Model. Numer. Anal. 36(2), 307–324 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  6. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978)

    MATH  Google Scholar 

  7. Costabel, M.: Symmetric methods for the coupling of finite elements and boundary elements. In: Boundary Elements IX, vol. 1 (Stuttgart, 1987), pp. 411–420. Comput. Mech., Southampton (1987)

  8. Costabel, M.: Boundary integral operators on Lipschitz domains: elementary results. SIAM J. Math. Anal. 19(3), 613–626 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  9. Costabel, M., Stephan, E.P.: A direct boundary integral equation method for transmission problems. J. Math. Anal. Appl. 106(2), 367–413 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  10. Erath, C.: Coupling of the Finite Volume Method and the Boundary Element Method—Theory, Analysis, and Numerics. Ph.D. thesis, University of Ulm (2010)

  11. Erath, C.: Coupling of the finite volume element method and the boundary element method: an a priori convergence result. SIAM J. Numer. Anal. 50(2), 574–594 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Erath, C.: A new conservative numerical scheme for flow problems on unstructured grids and unbounded domains. J. Comput. Phys. 245, 476–492 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. Erath, C.: A posteriori error estimates and adaptive mesh refinement for the coupling of the finite volume method and the boundary element method. SIAM J. Numer. Anal. 51(3), 1777–1804 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  14. Erath, C., Praetorius, D.: Adaptive vertex-centered finite volume methods with convergence rates. SIAM J. Numer. Anal. arXiv:1508.06155v2 (2016, preprint)

  15. Ewing, R.E., Lin, T., Lin, Y.: On the accuracy of the finite volume element method based on piecewise linear polynomials. SIAM J. Numer. Anal. 39(6), 1865–1888 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  16. Feischl, M., Führer, T., Karkulik, M., Praetorius, D.: Stability of symmetric and nonsymmetric FEM–BEM couplings for nonlinear elasticity problems. Numer. Math. 130(2), 199–223 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  17. Gatica, G.N., Hsiao, G.C., Sayas, F.-J.: Relaxing the hypotheses of Bielak-MacCamy’s BEM-FEM coupling. Numer. Math. 120(3), 465–487 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hackbusch, W.: On first and second order box schemes. Computing 41(4), 277–296 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  19. Heuer, N., Sayas, F.-J.: Analysis of a non-symmetric coupling of interior penalty DG and BEM. Math. Comput. 84(292), 581–598 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  20. Johnson, C., Nédélec, J.C.: On the coupling of boundary integral and finite element methods. Math. Comput. 35(152), 1063–1079 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  21. McLean, W.: Strongly Elliptic Systems and Boundary Integral Equations. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  22. Of, G., Steinbach, O.: Is the one-equation coupling of finite and boundary element methods always stable? Z. Angew. Math. Mech. 93(6–7), 476–484 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  23. Of, G., Steinbach, O.: On the ellipticity of coupled finite element and one-equation boundary element methods for boundary value problems. Numer. Math. 127(3), 567–593 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  24. Roos, H.G., Stynes, M., Tobiska, L.: Numerical Methods for Singularly Perturbed Differential Equations, vol. 24. Springer, Berlin (1996)

    MATH  Google Scholar 

  25. Sayas, F.-J.: The validity of Johnson–Nédélec’s BEM–FEM coupling on polygonal interfaces. SIAM J. Numer. Anal. 47(5), 3451–3463 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  26. Sayas, F.-J.: The validity of Johnson–Nédélec’s BEM–FEM coupling on polygonal interfaces. SIAM Rev. 55(1), 131–146 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  27. Steinbach, O.: A note on the stable one-equation coupling of finite and boundary elements. SIAM J. Numer. Anal. 49(4), 1521–1531 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  28. Steinbach, O.: On the stability of the non-symmetric BEM/FEM coupling in linear elasticity. Comput. Mech. 51(4), 421–430 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  29. Steinbach, O., Wendland, W.L.: On C. Neumann’s method for second-order elliptic systems in domains with non-smooth boundaries. J. Math. Anal. Appl. 262(2), 733–748 (2001)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

F.-J. Sayas was partially supported by NSF Grant DMS 1216356.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Erath.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Erath, C., Of, G. & Sayas, FJ. A non-symmetric coupling of the finite volume method and the boundary element method. Numer. Math. 135, 895–922 (2017). https://doi.org/10.1007/s00211-016-0820-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-016-0820-3

Mathematics Subject Classification

Navigation