Skip to main content
Log in

Classical FEM-BEM coupling methods: nonlinearities, well-posedness, and adaptivity

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

We consider a (possibly) nonlinear interface problem in 2D and 3D, which is solved by use of various adaptive FEM-BEM coupling strategies, namely the Johnson–Nédélec coupling, the Bielak–MacCamy coupling, and Costabel’s symmetric coupling. We provide a framework to prove that the continuous as well as the discrete Galerkin solutions of these coupling methods additionally solve an appropriate operator equation with a Lipschitz continuous and strongly monotone operator. Therefore, the original coupling formulations are well-defined, and the Galerkin solutions are quasi-optimal in the sense of a Céa-type lemma. For the respective Galerkin discretizations with lowest-order polynomials, we provide reliable residual-based error estimators. Together with an estimator reduction property, we prove convergence of the adaptive FEM-BEM coupling methods. A key point for the proof of the estimator reduction are novel inverse-type estimates for the involved boundary integral operators which are advertized. Numerical experiments conclude the work and compare performance and effectivity of the three adaptive coupling procedures in the presence of generic singularities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ainsworth M, Oden JT (2000) A posteriori error estimation in finite element analysis. Wiley-Interscience, Wiley, New-York

    Book  MATH  Google Scholar 

  2. Aurada M, Ebner M, Feischl M, Ferraz-Leite S, Goldenits P, Karkulik M, Mayr M, Praetorius D (2011) HILBERT: a Matlab implementation of adaptive 2D-BEM. ASC Report 24/2011, Institute for Analysis and Scientific Computing, Vienna University of Technology, Wien, software download at http://www.asc.tuwien.ac.at/abem/hilbert/

  3. Aurada M, Ferraz-Leite S, Praetorius D (2012) Estimator reduction and convergence of adaptive BEM. Appl Numer Math 62: 787–801

    Article  MathSciNet  MATH  Google Scholar 

  4. Aurada M, Feischl M, Führer T, Karkulik M, Melenk JM, Praetorius D (2012) Inverse estimates for elliptic integral operators and application to the adaptive coupling of FEM and BEM (preprint)

  5. Aurada M, Feischl M, Karkulik M, Praetorius D (2012) A posteriori error estimates for the Johnson–Nédélec FEM-BEM coupling. Eng Anal Bound Elem 36: 255–266

    Article  MathSciNet  MATH  Google Scholar 

  6. Aurada M, Feischl M, Praetorius D (2012) Convergence of some adaptive FEM-BEM coupling for elliptic but possibly nonlinear interface problems. Math Model Numer Anal 46: 1147–1173

    Article  MathSciNet  Google Scholar 

  7. Aurada M, Karkulik M, Praetorius D (2012) Simple error estimates for hypersingular integral equations in adaptive 3D-BEM (in progress)

  8. Bielak J, MacCamy RC (1983/1984) An exterior interface problem in two-dimensional elastodynamics. Quart Appl Math 41:143–159

    Google Scholar 

  9. Carstensen C (1996) A posteriori error estimate for the symmetric coupling of finite elements and boundary elements. Computing 57: 301–322

    Article  MathSciNet  MATH  Google Scholar 

  10. Carstensen C, Funken SA, Stephan EP (1997) On the adaptive coupling of FEM and BEM in 2-d-elasticity. Numer Math 77: 187–221

    Article  MathSciNet  MATH  Google Scholar 

  11. Carstensen C, Maischak M, Stephan EP (2001) A posteriori error estimate and h-adaptive algorithm on surfaces for Symm’s integral equation. Numer Math 90: 197–213

    Article  MathSciNet  MATH  Google Scholar 

  12. Carstensen C, Stephan E (1995) Adaptive coupling of boundary elements and finite elements. Math Model Numer Anal 29: 779–817

    MathSciNet  MATH  Google Scholar 

  13. Cascon M, Kreuzer C, Nochetto R, Siebert K (2008) Quasi-optimal convergence rate for an adaptive finite element method. SIAM J Numer Anal 46: 2524–2550

    Article  MathSciNet  MATH  Google Scholar 

  14. Costabel MA (1988) symmetric method for the coupling of finite elements and boundary elements. In: Whiteman J (ed) The mathematics of finite elements and applications IV, MAFELAP 1987, Academic Press, London, pp 281–288

  15. Costabel M, Ervin VJ, Stephan EP (1991) Experimental convergence rates for various couplings of boundary and finite elements. Math Comput Model 15: 93–102

    Article  MathSciNet  MATH  Google Scholar 

  16. Costabel M, Stephan EP (1990) Coupling of finite and boundary element methods for an elastoplastic interface problem. SIAM J Numer Anal 27: 1212–1226

    Article  MathSciNet  MATH  Google Scholar 

  17. Feischl M, Karkulik M, Melenk JM, Praetorius D (2011) Quasi-optimal convergence rate for an adaptive boundary element method. ASC Report 28/2011, Institute for Analysis and Scientific Computing, Vienna University of Technology, Wien

  18. Gatica G, Hsiao G (1995) Boundary-field equation methods for a class of nonlinear problems. Longman, Harlow

    MATH  Google Scholar 

  19. Gatica G, Hsiao G, Sayas FJ (2012) Relaxing the hypotheses of Bielak–MacCamy’s BEM-FEM coupling. Numer Math 120: 465–487

    Article  MathSciNet  MATH  Google Scholar 

  20. Graham I, Hackbusch W, Sauter S (2005) Finite elements on degenerate meshes: inverse-type inequalities and applications. IMA J Numer Anal 25: 379–407

    Article  MathSciNet  MATH  Google Scholar 

  21. Hsiao G, Wendland W (2008) Boundary integral equations. Applied mathematical sciences 164. Springer, Berlin

    Book  Google Scholar 

  22. Johnson C, Nédélec JC (1980) On the coupling of boundary integral and finite element methods. Math Comp 35: 1063–1079

    Article  MathSciNet  MATH  Google Scholar 

  23. Leydecker F, Maischak M, Stephan EP, Teltscher M (2010) Adaptive FE-BE coupling for an electromagnetic problem in \({\mathbb {R}^3}\) : a residual error estimator. Math Methods Appl Sci 33: 2162–2186

    Article  MathSciNet  MATH  Google Scholar 

  24. McLean W (2000) Strongly elliptic systems and boundary integral equations. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  25. Sauter S, Schwab C (2011) Boundary element methods. Springer, Berlin

    Book  MATH  Google Scholar 

  26. Sayas FJ (2009) The validity of Johnson–Nédélec’s BEM-FEM coupling on polygonal interfaces. SIAM J Numer Anal 47: 3451–3463

    Article  MathSciNet  MATH  Google Scholar 

  27. Scott LR, Zhang S (1990) Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math Comp 54: 483–493

    Article  MathSciNet  MATH  Google Scholar 

  28. Steinbach O (2008) Numerical approximation methods for elliptic boundary value problems: Finite and boundary elements. Springer, New York

    Book  MATH  Google Scholar 

  29. Steinbach O (2011) A note on the stable one-equation coupling of finite and boundary elements. SIAM J Numer Anal 49: 1521–1531

    Article  MathSciNet  MATH  Google Scholar 

  30. Stephan EP, Maischak M (2005) A posteriori error estimates for fem-bem couplings of three-dimensional electromagnetic problems. Methods Appl Mech Eng 1994: 441–452

    Article  MathSciNet  Google Scholar 

  31. Stevenson R (2008) The completion of locally refined simplicial partitions created by bisection. Math Comp 77: 227–241

    Article  MathSciNet  MATH  Google Scholar 

  32. Zeidler E (1990) Nonlinear functional analysis and its applications, part II/B. Springer, New York

    Book  Google Scholar 

  33. Zienkiewicz OC, Kelly DW, Bettess P (1979) Marriage la mode: the best of both worlds (finite elements and boundary integrals). Energy methods in finite element analysis. Wiley, Chichester

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Führer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aurada, M., Feischl, M., Führer, T. et al. Classical FEM-BEM coupling methods: nonlinearities, well-posedness, and adaptivity. Comput Mech 51, 399–419 (2013). https://doi.org/10.1007/s00466-012-0779-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-012-0779-6

Keywords

Navigation