Skip to main content
Log in

Non-Fickian convection–diffusion models in porous media

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

In this paper we propose a numerical scheme to approximate the solution of a non-Fickian coupled model that describes, e.g., miscible transport in porous media. The model is defined by a system of a quasilinear elliptic equation, which governs the fluid pressure, and a quasilinear integro-differential equation, which models the convection–diffusion transport process. The numerical scheme is based on a conforming piecewise linear finite element method for the discretization in space. The fully discrete approximations is obtained with an implicit–explicit method. Estimates for the continuous in time and the fully discrete methods are derived, showing that the numerical approximation for the concentrations and the pressure are second order convergent in a discrete \(L^2\)-norm and in a discrete \(H^1\)-norm, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Araújo, A., Branco, J., Ferreira, J.: On the stability of a class of splitting methods for integro-differential equations. Appl. Numer. Math. 59, 436–453 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Barbeiro, S., Ferreira, J., Pinto, L.: H\(^1\)-second order convergent estimates for non-Fickian models. Appl. Numer. Math. 61, 201–215 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  3. Berkowitz, B., Cortis, A., Dentz, M., Scher, H.: Modeling non-Fickian transport in geological formation as a continuous time random walks. Rev. Geophys. 44, 1–49 (2006)

    Article  Google Scholar 

  4. Branco, J., Ferreira, J., de Oliveira, P.: Numerical methods for the generalized Fisher-Kolmogorov-Petrovskii-Piskunov equation. Appl. Numer. Math. 57, 89–102 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bromly, M., Hinz, C.: Non-Fickian transport in homogeneous unsaturated repacked sand. Water Resour. Res. 40, W07402 (2004)

    Article  Google Scholar 

  6. Cortis, A., Berkowitz, B.: Anomalous transport in classical soil and sand columns. Soil Sci. Soc. Am. J. 68, 139–148 (2004)

    Article  Google Scholar 

  7. Cortis, A., Chen, Y., Scher, H., Berkowitz, B.: Quantitative characterization of pore-scale disorder effects on transport in homogeneous granular media. Phys. Rev. E 3(70), 041108 (2004)

    Article  Google Scholar 

  8. Cushman, J., Ginn, T.: Nonlocal dispersion in media with continuously evolving scales heterogeneity. Transp. Porous Media 13, 123–128 (1993)

    Article  Google Scholar 

  9. Dagan, G.: The significance of heterogeneity of evolving scales to transport in porous formations. Water Resour. Res. 30, 3327–3336 (1994)

    Article  Google Scholar 

  10. Dentz, M., Cortis, A., Scher, H., Berkowitz, B.: Time behavior of solute transport in heterogeneous media: transition from anomalous to normal transport. Adv. Water Res. 27, 155–173 (2004)

    Article  Google Scholar 

  11. Edwards, D., Cohen, D.: A mathematical model for a dissolving polymer. AlChE J. 41, 2345–2355 (1995)

    Article  Google Scholar 

  12. Edwards, D., Cohen, D.: An unusual moving boundary condition arising in anomalous diffusion problems. SIAM J. Appl. Math. 55, 662–676 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ewing, R., Lazarov, R., Lin, Y.: Finite volume element approximations of nonlocal in time one-dimensional flows in porous media. Computing 64, 157–182 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ewing, R., Lazarov, R., Lin, Y.: Finite volume element approximations of nonlocal reactive flows in porous media. Numer. Methods Partial Differ. Equ. 16, 258–311 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ewing, R., Wheeler, M.: Galerkin methods for miscible displacement problems in porous media. SIAM J. Numer. Anal. 17, 351–365 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  16. Ferreira, J., Grassi, M., Gudiño, E., de Oliveira, P.: A 3D model for mechanistic control drug release. SIAM J. Appl. Math. 74, 620–633 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  17. Ferreira, J., Grigorieff, R.: Supraconvergence and supercloseness of a scheme for elliptic equations on nonuniform grids. Numer. Funct. Anal. Opt. 27, 539–564 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  18. Ferreira, J., de Oliveira, P., da Silva, P., Simon, L.: Molecular transport in viscoelastic materials: mechanistic properties and chemical affinities. SIAM J. Appl. Math. 74, 1598–1614 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  19. Ferreira, J., Pinto, L.: Supraconvergence and supercloseness in quasilinear coupled problems. J. Comput. Appl. Math. 252, 120–131 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. Ferreira, J., Pinto, L.: An integro-differential model for non-Fickian tracer transport in porous media: validation and numerical simulation. Math. Method Appl. Sci. 39, 4736–4749 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  21. Ferreira, J., Pinto, L., Romanazzi, G.: Supraconvergence and supercloseness in volterra equations. Appl. Numer. Math. 62, 1718–1739 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  22. Fourar, M., Radilla, G.: Non-Fickian description of tracer transport through heterogeneous porous media. Transp. Porous Media 80, 561–579 (2009)

    Article  Google Scholar 

  23. Hassahizadeh, S.: On the transient non-Fickian dispersion theory. Transp. Porous Media 23, 107–124 (1996)

    Google Scholar 

  24. Lin, Y.: Semi-discrete finite element approximations for linear parabolic integro-differential equations with integrable kernels. J. Integral Equ. Appl. 10, 51–83 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  25. Lin, Y., Thomée, V., Wahlbin, L.: Ritz-Volterra projections to finite-element spaces and applications to integro-differential and related equations. SIAM J. Numer. Anal. 28, 1047–1070 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  26. Maas, C.: A hyperbolic dispersion equation to model the bounds of a contaminated groundwater body. J. Hydrol. 226, 234–241 (1999)

    Article  Google Scholar 

  27. Neuman, S., Tartakovski, D.: Perspective on theories of non-Fickian transport in heterogeneous media. Adv. Water Res. 32, 670–680 (2008)

    Article  Google Scholar 

  28. Pani, A., Peterson, T.: Finite element methods with numerical quadrature for parabolic integro-differential equations. SIAM J. Numer. Anal. 33, 1084–1105 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  29. Scheidegger, A.: Typical solutions of the differential equations of statistical theories of flow through porous media. Eos Trans. AGU 39, 929–932 (1958)

    Article  Google Scholar 

  30. Sinha, R., Ewing, R., Lazarov, R.: Some new error estimates of a semidiscrete finite volume element method for a parabolic integro-differential equation with nonsmooth initial data. SIAM J. Numer. Anal. 43, 2320–2344 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  31. Strack, O.: A mathematical model for dispersion with a moving front in groundwater. Water Resour. Res. 28, 2973–2980 (1992)

    Article  Google Scholar 

  32. Thomée, V., Zhang, N.Y.: Error estimates for semidiscrete finite element methods for parabolic integro-differential equations. Math. Comput. 53, 121–139 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  33. Tompson, A.: On a new functional form for the dispersive flux in porous media. Water Resour. Res. 24, 1939–1947 (1988)

    Article  Google Scholar 

  34. Wheeler, M.: A priori \({L}^2\) error estimates for Galerkin approximations to parabolic partial differential equations. SIAM J. Numer. Anal. 10, 723–759 (1973)

    Article  MathSciNet  Google Scholar 

  35. Zhang, N.: On fully discrete Galerkin approximations for partial integro-differential equations of parabolic type. Math. Comput. 60, 133–166 (1993)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José A. Ferreira.

Additional information

This work was partially supported by the Centre for Mathematics of the University of Coimbra—UID/MAT/00324/2013, funded by the Portuguese Government through FCT/MCTES and co-funded by the European Regional Development Fund through the Partnership Agreement PT2020. L. Pinto was also supported by FCT scholarship SFRH/BPD/112687/2015. S. Barbeiro also acknowledges the support of the Fundação para a Ciência e a Tecnologia, I.P.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barbeiro, S., Bardeji, S.G., Ferreira, J.A. et al. Non-Fickian convection–diffusion models in porous media. Numer. Math. 138, 869–904 (2018). https://doi.org/10.1007/s00211-017-0922-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-017-0922-6

Mathematics Subject Classification

Navigation