Skip to main content
Log in

Phase-field approximations of the Willmore functional and flow

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

We discuss in this paper phase-field approximations of the Willmore functional and the associated \({\mathrm L}^{2}\)-flow. After recollecting known results on the approximation of the Willmore energy and its \({\mathrm L}^{1}\) relaxation, we derive the expression of the flows associated with various approximations, and we show their behavior by formal arguments based on matched asymptotic expansions. We introduce an accurate numerical scheme, whose local convergence is proved, to describe with more details the behavior of two flows, the classical and the flow associated with an approximation model due to Mugnai. We propose a series of numerical simulations in 2D and 3D to illustrate their behavior in both smooth and singular situations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Ambrosio, L.: Geometric evolution problems, distance function and viscosity solutions. In: Calculus of variations and partial differential equations (Pisa, 1996), pp. 5–93. Springer, Berlin (2000)

  2. Ambrosio, L., Mantegazza, C.: Curvature and distance function from a manifold. J. Geom. Anal. 8(5), 723–748 (1998). Dedicated to the memory of Fred Almgren

    Article  MathSciNet  Google Scholar 

  3. Ambrosio, L., Masnou, S.: A direct variational approach to a problem arising in image reconstruction. Interfaces Free Bound. 5, 63–81 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  4. Barrett, J.W., Garcke, H., Nürnberg, R.: A parametric finite element method for fourth order geometric evolution equations. J. Comput. Phys. 222(1), 441–467 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  5. Barrett, J.W., Garcke, H., Nürnberg, R.: On the parametric finite element approximation of evolving hypersurfaces in \({\mathbb{R}}^3\). J. Comput. Phys. 227, 4281–4307 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  6. Barrett, J.W., Garcke, H., Nürnberg, R.: Parametric approximation of Willmore flow and related geometric evolution equations. SIAM J. Sci. Comput. 31(1), 225–253 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  7. Barrett, J.W., Garcke, H., Nürnberg, R.: A variational formulation of anisotropic geometric evolution equations in higher dimensions. Numer. Math. 109, 1–44 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  8. Bellettini, G.: Variational approximation of functionals with curvatures and related properties. J. Convex Anal. 4(1), 91–108 (1997)

    MATH  MathSciNet  Google Scholar 

  9. Bellettini, G., Maso, G.D., Paolini, M.: Semicontinuity and relaxation properties of curvature depending functional in 2D. Annali della Scuola Normale di Pisa, Classe di Scienze, \(4^e\) série, 20(2), 247–297 (1993)

  10. Bellettini, G., Mugnai, L.: Characterization and representation of the lower semicontinuous envelope of the elastica functional. Ann. Inst. H. Poincaré, Anal. non Linéaire 21(6), 839–880 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  11. Bellettini, G., Mugnai, L.: On the approximation of the elastica functional in radial symmetry. Calc. Var. Partial Differ. Equ. 24, 1–20 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  12. Bellettini, G., Mugnai, L.: A varifold representation of the relaxed elastica functional. J. Convex Anal. 14(3), 543–564 (2007)

    MATH  MathSciNet  Google Scholar 

  13. Bellettini, G., Mugnai, L.: Approximation of Helfrich’s functional via diffuse interfaces. SIAM J. Math. Anal. 42(6), 2402–2433 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  14. Bellettini, G., Paolini, M.: Approssimazione variazionale di funzionali con curvatura. In: Seminario Analisi Matematica, University of Bologna, pp. 87–97 (1993)

  15. Bellettini, G., Paolini, M.: Quasi-optimal error estimates for the mean curvature flow with a forcing term. Differ. Integral Equ. 8(4), 735–752 (1995)

    MATH  MathSciNet  Google Scholar 

  16. Bellettini, G., Paolini, M.: Anisotropic motion by mean curvature in the context of Finsler geometry. Hokkaido Math. J. 25, 537–566 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  17. Bence, J., Merriman, B., Osher, S.: Diffusion generated motion by mean curvature. In: Taylor, J. (ed.) Computational Crystal Growers Workshop. Selected Lectures in Mathematics, pp. 73–83. American Mathematical Society, New York (1992)

  18. Bobenko, A., Schröder, P.: Discrete Willmore flow. In: Eurographics Symposium on Geometry Processing (2005)

  19. Cabré, X., Terra, J.: Saddle-shaped solutions of bistable diffusion equations in all of \({\mathbb{R}}^{2m}\). J. Eur. Math. Soc. 11(4), 819–843 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  20. Caginalp, G., Fife, P.C.: Dynamics of layered interfaces arising from phase boundaries. SIAM J. Appl. Math. 48(3), 506–518 (1988)

    Article  MathSciNet  Google Scholar 

  21. Cahn, J., Taylor, J.: Overview no. 113: surface motion by surface diffusion. Acta Metallurgica et Materialia 42(4), 1045–1063 (1994)

    Article  Google Scholar 

  22. Cahn, J.W.: On spinodal decomposition. Acta Metallurgica 9(9), 795–801 (1961)

    Article  Google Scholar 

  23. Cahn, J.W., Hilliard, J.E.: Free energy of a nonuniform system. I. Interfacial free energy. J. Chem. Phys. 28(2), 258–267 (1958)

    Article  Google Scholar 

  24. Chen, X.: Generation and propagation of interfaces for reaction–diffusion equations. J. Differ. Equ. 96(1), 116–141 (1992)

    Article  MATH  Google Scholar 

  25. Chen, X.: Global asymptotic limit of solutions of the Cahn–Hilliard equation. J. Differ. Geom. 44, 262–311 (1996)

    MATH  Google Scholar 

  26. Chen, Y.G., Giga, Y., Goto, S.: Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations. Proc. Jpn. Acad. Ser. A Math. Sci. 65(7), 207–210 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  27. Colli, P., Laurencot, P.: A phase-field approximation of the Willmore flow with volume constraint. Interfaces Free Bound 13, 341–351 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  28. Colli, P., Laurencot, P.: A phase-field approximation of the Willmore flow with volume and area constraints. SIAM J. Math. Anal. 44, 3734–3754 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  29. Dang, H., Fife, P.C., Peletier, L.: Saddle solutions of the bistable diffusion equation. Zeitschrift fur angewandte Mathematik und Physik ZAMP 43(6), 984–998 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  30. De Giorgi, E.: Some remarks on \(\varGamma \)-convergence and least square methods. In: Maso, G.D., Dell’Antonio, G. (eds.) Composite Media and Homogenization Theory, pp. 135–142. Birkhaüser, Boston (1991)

    Chapter  Google Scholar 

  31. Deckelnick, K., Dziuk, G.: Discrete anisotropic curvature flow of graphs. M2AN Math. Model. Numer. Anal. 33, 1203–1222 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  32. Deckelnick, K., Dziuk, G., Elliott, C.M.: Computation of geometric partial differential equations and mean curvature flow. Acta Numer. 14, 139–232 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  33. del Pino, M., Kowalczyk, M., Pacard, F., Wei, J.: Multiple-end solutions to the Allen–Cahn equation in \({\mathbb{R}}^2\). J. Funct. Anal. 258(2), 458–503 (2010)

    Article  MathSciNet  Google Scholar 

  34. Droske, M., Rumpf, M.: A level set formulation for Willmore flow. Interfaces and free boundaries, pp. 361–378 (2004)

  35. Du, Q., Liu, C., Wang, X.: A phase field approach in the numerical study of the elastic bending energy for vesicle membranes. J. Comput. Phys. 198(2), 450–468 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  36. Du, Q., Liu, C., Wang, X.: Simulating the deformation of vesicle membranes under elastic bending energy in three dimensions. J. Comput. Phys. 212(2), 757–777 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  37. Du, Q., Wang, X.: Convergence of numerical approximations to a phase field bending elasticity model of membrane deformations. Internat. J. Numer. Anal. Model. 4, 441–459 (2007)

    MATH  MathSciNet  Google Scholar 

  38. Dziuk, G.: Computational parametric Willmore flow. Numer. Math. 111(1), 55–80 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  39. Dziuk, G., Kuwert, E., Schätzle, R.: Evolution of elastic curves in \({{\mathbb{R}}^n}\): existence and computation. SIAM J. Math. Anal. 33(5), 1228–1245 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  40. Esedoḡlu, S.: Unpublished work (2009)

  41. Esedoḡlu, S., Rätz, A., Röger, M.: Colliding interfaces in old and new diffuse-interface approximations of Willmore-flow (2012)

  42. Esedoḡlu, S., Ruuth, S.J., Tsai, R.: Threshold dynamics for high order geometric motions. Interfaces Free Bound. 10(3), 263–282 (2008)

    Article  MathSciNet  Google Scholar 

  43. Evans, L.C., Spruck, J.: Motion of level sets by mean curvature. I. J. Differ. Geom. 33(3), 635–681 (1991)

    MATH  MathSciNet  Google Scholar 

  44. Fife, P.C.: Models for phase separation and their mathematics. Electr. J. Differ. Equ. 48, 26 (2000) (electronic)

  45. Franken, M., Rumpf, M., Wirth, B.: A phase field based PDE constraint optimization approach to time discrete Willmore flow. Int. J. Numer. Anal. Model. (2011) (accepted)

  46. Gilbarg, D., Trudinger, N.: Elliptic partial differential equations of second order. Springer, Berlin (1998)

    MATH  Google Scholar 

  47. Gui, C.: Hamiltonian identities for elliptic partial differential equations. J. Funct. Anal. 254(4), 904–933 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  48. Hartman, P., Wintner, A.: On the local behavior of solutions of non-parabolic partial differential equations. Am. J. Math. 75, 449–476 (1953)

    Article  MATH  MathSciNet  Google Scholar 

  49. Hsu, L., Kusner, R., Sullivan, J.: Minimizing the squared mean curvature integral for surfaces in space forms. Exp. Math. 1(3), 191–207 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  50. Kowalczyk, M., Liu, Y., Pacard, F.: Four ended solutions to the Allen–Cahn equation on the plane. Ann. Inst. H. Poincaré Anal. Non Linéaire 29(5), 761–781 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  51. Kusner, R.: Comparison surfaces for the Willmore problem. Pac. J. Math. 138(2), (1989)

  52. Kuwert, E., Schätzle, R.: Removability of point singularities of Willmore surfaces. Ann. Math. (2) 160(1), 315–357 (2004)

    Article  MATH  Google Scholar 

  53. Kuwert, E.K., Schätzle, R.: The Willmore flow with small initial energy. Differ. Geom. 57(3), 409–441 (2001)

    MATH  Google Scholar 

  54. Langer, J., Singer, D.A.: Curve straightening and a minimax argument for closed elastic curves. Topology 24, 75–88 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  55. Leonardi, G., Masnou, S.: Locality of the mean curvature of rectifiable varifolds. Adv. Calc. Var. 2(1), 17–42 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  56. Loreti, P., March, R.: Propagation of fronts in a nonlinear fourth order equation. Eur. J. Appl. Math. 11, 203–213, 3 (2000)

  57. Lowengrub, J., Rätz, A., Voigt, A.: Phase-field modeling of the dynamics of multicomponent vesicles: spinodal decomposition, coarsening, budding, and fission. Phys. Rev. E (Statistical, Nonlinear, and Soft Matter Physics), 79(3), 031926+ (2009)

  58. Marques, F.C., Neves, A.: Min-max theory and the Willmore conjecture. arXiv:1202.6036 (2012)

  59. Masnou, S., Nardi, G.: A coarea-type formula for the relaxation of a generalized Willmore functional. J. Convex Anal. (2013) (to appear)

  60. Masnou, S., Nardi, G.: Gradient Young measures, varifolds, and a generalized Willmore functional. Adv. Calc. Var. (2013) (to appear)

  61. Mayer, U.F., Simonett, G.: A numerical scheme for axisymmetric solutions of curvature driven free boundary problems, with applications to the Willmore flow. Interfaces Free Bound 4(1), 89–109 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  62. Modica, L., Mortola, S.: Il limite nella \(\varGamma \)-convergenza di una famiglia di funzionali ellittici. Boll. Un. Mat. Ital. A (5) 14(3), 526–529 (1977)

    MATH  MathSciNet  Google Scholar 

  63. Modica, L., Mortola, S.: Un esempio di \(\varGamma -\)-convergenza. Boll. Un. Mat. Ital. B (5) 14(1), 285–299 (1977)

  64. Moser, R.: A higher order asymptotic problem related to phase transitions. SIAM J. Math. Anal. 37(3), 712–736 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  65. Mugnai, L.: Gamma-convergence results for phase-field approximations of the 2D-Euler elastica functional (2010)

  66. Nagase, Y., Tonegawa, Y.: A singular perturbation problem with integral curvature bound. Hiroshima Math. J. 37, 455–489 (2007)

    MATH  MathSciNet  Google Scholar 

  67. Olischläger, N., Rumpf, M.: A nested variational time discretization for parametric Willmore flow. Interfaces Free Bound. (2011) (in press)

  68. Osher, S., Fedkiw, R.: Level set methods and dynamic implicit surfaces. Appl. Math. Sci. (2002)

  69. Osher, S., Paragios, N.: Geometric level set methods in imaging, vision and graphics. Springer, New York (2003)

    MATH  Google Scholar 

  70. Osher, S., Sethian, J.A.: Fronts propagating with curvature-dependent speed: algorithms based on Hamilton–Jacobi formulations. J. Comput. Phys. 79, 12–49 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  71. Paolini, M.: An efficient algorithm for computing anisotropic evolution by mean curvature. In: Curvature flows and related topics (Levico, 1994), volume 5 of GAKUTO Internat. Series in Mathematical Science and Engineering, pp. 199–213. Gakkōtosho, Tokyo (1995)

  72. Pego, R.L.: Front migration in the nonlinear Cahn–Hilliard equation. Proc. Roy. Soc. Lond. Ser. A 422(1863), 261–278 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  73. Polthier, K.: Polyhedral surfaces of constant mean curvature. Habilitation thesis, TU Berlin (2002)

  74. Röger, M., Schätzle, R.: On a modified conjecture of De Giorgi. Math. Z. 254(4), 675–714 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  75. Rowlinson, J.: Translation of J. D. van der Waals’ “The thermodynamik theory of capillarity under the hypothesis of a continuous variation of density”. J. Stat. Phys. 20(2), 197–200 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  76. Rusu, R.E.: An algorithm for the elastic flow of surfaces. Interfaces Free Bound. 3, 229–229 (2005)

    Article  MathSciNet  Google Scholar 

  77. Serfaty, S.: Gamma-convergence of gradient flows on hilbert and metric spaces and applications. Discr. Cont. Dyn. Syst. 31(4), 1427–1451 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  78. Tonegawa, Y.: Phase field model with a variable chemical potential. In: Proceedings of the Royal Society of Edinburgh: Section A Mathematics, vol. 132, pp. 993–1019, 7 (2002)

  79. Wang, X.: Asymptotic analysis of phase field formulations of bending elasticity models. SIAM J. Math. Anal. 39(5), 1367–1401 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  80. Wardetzky, M., Bergou, M., Harmon, D., Zorin, D., Grinspun, E.: Discrete quadratic curvature energies. Comput. Aided Geom. Des. 24(8–9), 499–518 (2007)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors thank Luca Mugnai, Selim Esedoḡlu, Petru Mironescu, and Giovanni Bellettini for fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon Masnou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bretin, E., Masnou, S. & Oudet, É. Phase-field approximations of the Willmore functional and flow. Numer. Math. 131, 115–171 (2015). https://doi.org/10.1007/s00211-014-0683-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-014-0683-4

Mathematics Subject Classification

Navigation