Skip to main content

Advertisement

Log in

A novel inhibitory mechanism of nitrogen-containing bisphosphonate on the activity of Cl extrusion in osteoclasts

  • Original Article
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

Nitrogen-containing bisphosphonates have been well known to be inhibited farnesyl diphosphate synthase (FDPS), an enzyme in mevalonic acid metabolism, resulting in disturbance in polymerization of cytoskeleton structure in bone resorption and promotion of apoptosis in mature osteoclasts. Although bisphosphonates have been reported to activate ion transporters in native epithelium and Xenopus oocytes, little is known whether bisphosphonates affect acid hydrochronic acid extrusion in osteoclasts during bone resorption. The aim of this study was to determine the role of bisphosphonates on inhibition of hydrochronic acid extrusion in osteoclasts. Effects of zoledronic acid, a nitrogen-containing bisphosphonate, on the Cl current activated by extracellular acidification were examined in two types of osteoclasts derived from RAW264.7 cells and mouse bone marrow macrophages (BMMs). Extracellular acidification induced outwardly rectifying Cl currents in mouse osteoclasts. Zoledronic acid dose-dependently inhibited the acid-activated Cl current. The non-nitrogen bisphosphonate etidronic acid had no effect on the acid-activated Cl current. Tetracycline-induced FDPS silencing caused a significant decrease in the Cl current. The inhibitor of geranylgeranyl transferase suppressed the Cl current. By contrast, the inhibitory action of zoledronic acid was rescued by addition of geranylgeranyl acid, a derivative of mevalonic acid. The activity of acid-activated Cl currents was dependent on expression of ClC-7 during osteoclastogenesis. These results suggest that nitrogen-containing bisphosphonates suppress the activity of osteoclastic acid-activated Cl currents through FDPS inhibition, suggesting the inhibition of Cl extrusion activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

FDPS:

Farnesyl diphosphate synthase

HMG-CoA:

Hydroxymethylglutaryl coenzyme A

GGOH:

Geranylgeraniol

M-CSF:

Macrophage colony stimulating factor

RANKL:

Receptor activator of NF-κB ligand

References

  • Amin D, Cornell SA, Gustafson SK, Needle SJ, Ullrich JW, Bilder GE, Perrone MH (1992) Bisphosphonates used for the treatment of bone disorders inhibit squalene synthase and cholesterol biosynthesis. J Lipid Res 33:1657–1663

    PubMed  CAS  Google Scholar 

  • Amin D, Cornell SA, Perrone MH, Bilder GE (1996) 1-Hydroxy-3-(methylpentylamino)-propylidene-1,1-bisphosphonic acid as a potent inhibitor of squalene synthase. Arzneimittelforschung 46:759–762

    PubMed  CAS  Google Scholar 

  • Auzanneau C, Thoreau V, Kitzis A, Becq F (2003) A novel voltage-dependent chloride current activated by extracellular acidic pH in cultured rat Sertoli cells. J Biol Chem 278:19230–19236

    Article  PubMed  CAS  Google Scholar 

  • Bénichou O, Cleiren E, Gram J, Bollerslev J, de Vernejoul MC, Van Hul W (2001) Mapping of autosomal dominant osteopetrosis type II (Albers-Schönberg disease) to chromosome 16p13.3. Am J Hum Genet 69:647–654

    Article  PubMed  Google Scholar 

  • Blair HC, Teitelbaum SL, Ghiselli R, Gluck S (1989) Osteoclastic bone resorption by a polarized vacuolar proton pump. Science 245:855–857

    Article  PubMed  CAS  Google Scholar 

  • Caraglia M, Budillon A, Tagliaferri P, Marra M, Abbruzzese A, Caponigro F (2005) Isoprenylation of intracellular proteins as a new target for the therapy of human neoplasms: preclinical and clinical implications. Curr Drug Targets 6:301–323

    Article  PubMed  CAS  Google Scholar 

  • Casey PJ (1995) Mechanisms of protein prenylation and role in G protein function. Biochem Soc Trans 23:161–166

    PubMed  CAS  Google Scholar 

  • Costa A, Gutla PV, Boccaccio A, Scholz-Starke J, Festa M, Basso B, Zanardi I, Pusch M, Schiavo FL, Gambale F, Carpaneto A (2012) The Arabidopsis central vacuole as an expression system for intracellular transporters: functional characterization of the Cl/H+ exchanger CLC-7. J Physiol 590:3421–3430

    Article  PubMed  CAS  Google Scholar 

  • Coxon FP, Helfrich MH, Van’t Hof R, Sebti S, Ralston SH, Hamilton A, Rogers MJ (2000) Protein geranylgeranylation is required for osteoclast formation, function, and survival: inhibition by bisphosphonates and GGTI-298. J Bone Miner Res 15:1467–1476

    Article  PubMed  CAS  Google Scholar 

  • Davignon J (2000) Beneficial cardiovascular pleiotropic effects of statins. Circulation 109:1139–1143

    Google Scholar 

  • Delmas PD, Meunier PJ (1997) The management of Paget’s disease of bone. N Engl J Med 336:558–566

    Article  PubMed  CAS  Google Scholar 

  • Diewald L, Rupp J, Dreger M, Hucho F, Gillen C, Nawrath H (2002) Activation by acidic pH of CLC-7 expressed in oocytes from Xenopus laevis. Biochem Biophys Res Commun 291:421–424

    Article  PubMed  CAS  Google Scholar 

  • Dobrucali A, Tobey NA, Awayda MS, Argote C, Abdulnour-Nakhoul S, Shao W, Orlando RC (2002) Physiological and morphological effects of alendronate on rabbit esophageal epithelium. Am J Physiol Gastrointest Liver Physiol 283:G576–G586

    PubMed  CAS  Google Scholar 

  • Dunford JE, Thompson K, Coxon FP, Luckman SP, Hahn FM, Poulter CD, Ebetino FH, Rogers MJ (2001) Structure–activity relationships for inhibition of farnesyl diphosphate synthase in vitro and inhibition of bone resorption in vivo by nitrogen-containing bisphosphonates. J Pharmacol Exp Ther 296:235–242

    PubMed  CAS  Google Scholar 

  • Fisher JE, Rogers MJ, Halasy JM, Luckman SP, Hughes DE, Masarachia PJ, Wesolowski G, Russell RG, Rodan GA, Reszka AA (1999) Alendronate mechanism of action: geranylgeraniol, an intermediate in the mevalonate pathway, prevents inhibition of osteoclast formation, bone resorption, and kinase activation in vitro. Proc Natl Acad Sci USA 96:133–138

    Article  PubMed  CAS  Google Scholar 

  • Fleisch H (1998) Bisphosphonates: mechanisms of action. Endocr Rev 19:80–100

    Article  PubMed  CAS  Google Scholar 

  • Forgac M (1989) Structure and function of vacuolar class of ATP-driven proton pumps. Physiol Rev 69:765–796

    PubMed  CAS  Google Scholar 

  • Gibbs JB, Oliff A, Kohl NE (1994) Farnesyltransferase inhibitors: Ras research yields a potential cancer therapeutic. Cell 77:175–178

    Article  PubMed  CAS  Google Scholar 

  • Hasmim M, Bieler G, Rüegg C (2007) Zoledronate inhibits endothelial cell adhesion, migration and survival through the suppression of multiple, prenylation-dependent signaling pathways. J Thromb Haemost 5:166–173

    Article  PubMed  CAS  Google Scholar 

  • Hughes DE, Wright KR, Uy HL, Sasaki A, Yoneda T, Roodman GD, Mundy GR, Boyce BF (1995) Bisphosphonates promote apoptosis in murine osteoclasts in vitro and in vivo. J Bone Miner Res 10:1478–1487

    Article  PubMed  CAS  Google Scholar 

  • Jilka RL, Takahashi K, Munshi M, Williams DC, Roberson PK, Manolagas SC (1998) Loss of estrogen upregulates osteoblastogenesis in the murine bone marrow. Evidence for autonomy from factors released during bone resorption. J Clin Invest 101:1942–1950

    Article  PubMed  CAS  Google Scholar 

  • Kajiya H, Okamoto F, Ohgi K, Nakao A, Fukushima H, Okabe K (2009) Characteristics of ClC7 Cl channels and their inhibition in mutant (G215R) associated with autosomal dominant osteopetrosis type II in native osteoclasts and hClcn7 gene-expressing cells. Pflugers Arch 458:1049–1059

    Article  PubMed  CAS  Google Scholar 

  • Karsdal MA, Henriksen K, Sørensen MG, Gram J, Schaller S, Dziegiel MH, Heegaard AM, Christophersen P, Martin TJ, Christiansen C, Bollerslev J (2005) Acidification of the osteoclastic resorption compartment provides insight into the coupling of bone formation to bone resorption. Am J Pathol 166:467–476

    Article  PubMed  CAS  Google Scholar 

  • Kelly ME, Dixon SJ, Sims SM (1994) Outwardly rectifying chloride current in rabbit osteoclasts is activated by hyposmotic stimulation. J Physiol 475:377–389

    PubMed  CAS  Google Scholar 

  • Kornak U, Kasper D, Bösl MR, Kaiser E, Schweizer M, Schulz A, Friedrich W, Delling G, Jentsch TJ (2001) Loss of the ClC-7 chloride channel leads to osteopetrosis in mice and man. Cell 104:205–215

    Article  PubMed  CAS  Google Scholar 

  • Leisle L, Ludwig CF, Wagner FA, Jentsch TJ, Stauber T (2011) ClC-7 is a slowly voltage-gated 2Cl/1H+-exchanger and requires Ostm1 for transport activity. EMBO J 30:2140–2152

    Article  PubMed  CAS  Google Scholar 

  • Liberman UA, Weiss SR, Bröll J, Minne HW, Quan H, Bell NH, Rodriguez-Portales J, Downs RW Jr, Dequeker J, Favus M (1995) Effect of oral alendronate on bone mineral density and the incidence of fractures in postmenopausal osteoporosis. The Alendronate Phase III Osteoporosis Treatment Study Group. N Engl J Med 333:1437–1443

    Article  PubMed  CAS  Google Scholar 

  • Luckman SP, Hughes DE, Coxon FP, Graham R, Russell G, Rogers MJ (1998a) Nitrogen-containing bisphosphonates inhibit the mevalonate pathway and prevent post-translational prenylation of GTP-binding proteins, including Ras. J Bone Miner Res 13:581–589

    Article  PubMed  CAS  Google Scholar 

  • Luckman SP, Coxon FP, Ebetino FH, Russell RG, Rogers MJ (1998b) Heterocycle-containing bisphosphonates cause apoptosis and inhibit bone resorption by preventing protein prenylation: evidence from structure-activity relationships in J774 macrophages. J Bone Miner Res 13:1668–1678

    Article  PubMed  CAS  Google Scholar 

  • Monier-Faugere MC, Geng Z, Paschalis EP, Qi Q, Arnala I, Bauss F, Boskey AL, Malluche HH (1999) Intermittent and continuous administration of the bisphosphonate ibandronate in ovariohysterectomized beagle dogs: effects on bone morphometry and mineral properties. J Bone Miner Res 14:1768–1778

    Article  PubMed  CAS  Google Scholar 

  • Nobles M, Higgins CF, Sardini A (2004) Extracellular acidification elicits a chloride current that shares characteristics with ICl(swell). Am J Physiol Cell Physiol 287:C1426–C1435

    Article  PubMed  CAS  Google Scholar 

  • Ohgi K, Okamoto F, Kajiya H, Sakagami R, Okabe K (2011) Antibodies against ClC7 inhibit extracellular acidification-induced Cl currents and bone resorption activity in mouse osteoclasts. Naunyn Schmiedebergs Arch Pharmacol 383:79–90

    Article  PubMed  CAS  Google Scholar 

  • Okamoto F, Kajiya H, Fukushima H, Jimi E, Okabe K (2004) Prostaglandin E2 activates outwardly rectifying Cl(−) channels via a cAMP-dependent pathway and reduces cell motility in rat osteoclasts. Am J Physiol Cell Physiol 287:C114–C124

    Article  PubMed  CAS  Google Scholar 

  • Parfitt AM, Mundy GR, Roodman GD, Hughes DE, Boyce BF (1996) A new model for the regulation of bone resorption, with particular reference to the effects of bisphosphonates. J Bone Miner Res 11:150–159

    Article  PubMed  CAS  Google Scholar 

  • Rogers MJ (2003) New insights into the molecular mechanisms of action of bisphosphonates. Curr Pharm Des 9:2643–2658

    Article  PubMed  CAS  Google Scholar 

  • Rogers MJ, Gordon S, Benford HL, Coxon FP, Luckman SP, Monkkonen J, Frith JC (2000) Cellular and molecular mechanisms of action of bisphosphonates. Cancer 88(12 Suppl):2961–2978

    Article  PubMed  CAS  Google Scholar 

  • Russell RG, Rogers MJ (1999) Bisphosphonates: from the laboratory to the clinic and back again. Bone 25:97–106

    Article  PubMed  CAS  Google Scholar 

  • Sabirov RZ, Prenen J, Droogmans G, Nilius B (2000) Extra- and intracellular proton-binding sites of volume-regulated anion channels. J Membr Biol 177:13–22

    Article  PubMed  CAS  Google Scholar 

  • Schaller S, Henriksen K, Sveigaard C, Heegaard AM, Hélix N, Stahlhut M, Ovejero MC, Johansen JV, Solberg H, Andersen TL, Hougaard D, Berryman M, Shiødt CB, Sørensen BH, Lichtenberg J, Christophersen P, Foged NT, Delaissé JM, Engsig MT, Karsdal MA (2004) The chloride channel inhibitor NS3736 [corrected] prevents bone resorption in ovariectomized rats without changing bone formation. J Bone Miner Res 19:1144–1153

    Article  PubMed  CAS  Google Scholar 

  • Seabra MC, James GL (1998) Prenylation assays for small GTPases. Methods Mol Biol 84:251–260

    PubMed  CAS  Google Scholar 

  • Shao W, Orlando RC, Awayda MS (2005) Bisphosphonates stimulate an endogenous nonselective cation channel in Xenopus oocytes: potential mechanism of action. Am J Physiol Cell Physiol 289:248–256

    Article  Google Scholar 

  • Shen BQ, Widdicombe JH, Mrsny RJ (1995) Effects of lovastatin on trafficking of cystic fibrosis transmembrane conductance regulator in human tracheal epithelium. J Biol Chem 270:25102–25106

    Article  PubMed  CAS  Google Scholar 

  • Shi CY, Wang R, Liu CX, Jiang H, Ma ZY, Li L, Zhang W (2009) Simvastatin inhibits acidic extracellular pH-activated, outward rectifying chloride currents in RAW264.7 monocytic-macrophage and human peripheral monocytes. Int Immunol 9:247–252

    Article  CAS  Google Scholar 

  • van Beek E, Löwik C, van der Pluijm G, Papapoulos S (1999a) The role of geranylgeranylation in bone resorption and its suppression by bisphosphonates in fetal bone explants in vitro: a clue to the mechanism of action of nitrogen-containing bisphosphonates. J Bone Miner Res 14:722–729

    Article  Google Scholar 

  • van Beek E, Pieterman E, Cohen L, Löwik C, Papapoulos S (1999b) Nitrogen-containing bisphosphonates inhibit isopentenyl pyrophosphate isomerase/farnesyl pyrophosphate synthase activity with relative potencies corresponding to their antiresorptive potencies in vitro and in vivo. Biochem Biophys Res Commun 255:491–494

    Article  PubMed  Google Scholar 

  • Yamamoto S, Ehara T (2006) Acidic extracellular pH-activated outwardly rectifying chloride current in mammalian cardiac myocytes. Am J Physiol Heart Circ Physiol 290:H1905–H1914

    Article  PubMed  CAS  Google Scholar 

  • Zhang FL, Casey PJ (1996) Influence of metal ions on substrate binding and catalytic activity of mammalian protein geranylgeranyltransferase type-I. Biochem J 320:925–932

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Grants-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science, and Technology of Japan (24592823 and 24593139) and the Strategic Study Base Formation Support Business (S1001059).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Kajiya.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ohgi, K., Kajiya, H., Okamoto, F. et al. A novel inhibitory mechanism of nitrogen-containing bisphosphonate on the activity of Cl extrusion in osteoclasts. Naunyn-Schmiedeberg's Arch Pharmacol 386, 589–598 (2013). https://doi.org/10.1007/s00210-013-0857-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-013-0857-0

Keywords

Navigation