Skip to main content

Advertisement

Log in

Effects of Ibandronate Sodium, a Nitrogen-Containing Bisphosphonate, on Intermediate-Conductance Calcium-Activated Potassium Channels in Osteoclast Precursor Cells (RAW 264.7)

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

Ibanonate sodium (Iban), a nitrogen-containing bisphosphonate, is recognized to reduce skeletal complications through an inhibition of osteoclast-mediated bone resorption. However, how this drug interacts with ion channels in osteoclasts and creates anti-osteoclastic activity remains largely unclear. In this study, we investigated the possible effects of Iban and other related compounds on ionic currents in the osteoclast precursor RAW 264.7 cells. Iban suppressed the amplitude of whole-cell K+ currents (I K) in a concentration-dependent manner with an IC50 value of 28.9 μM. The I K amplitude was sensitive to block by TRAM-34 and Iban-mediated inhibition of I K was reversed by further addition of DCEBIO, an activator of intermediate-conductance Ca2+-activated K+ (IKCa) channels. Intracellular dialysis with Iban diminished I K amplitude and further addition of ionomycin reversed its inhibition. In 17β-estradiol-treated cells, Iban-mediated inhibition of I K remained effective. In cell-attached current recordings, Iban applied to bath did not modify single-channel conductance of IKCa channels; however, it did reduce channel activity. Iban-induced inhibition of IKCa channels was voltage-dependent. As IKCa-channel activity was suppressed by KN-93, subsequent addition of Iban did not further decrease the channel open probability. Iban could not exert any effect on inwardly rectifying K+ current in RAW 264.7 cells. Under current-clamp recordings, Iban depolarized the membrane of RAW 264.7 cells and DCEBIO reversed Iban-induced depolarization. Iban also suppressed lipopolysaccharide-stimulated migration of RAW 264.7 cells in a concentration-dependent manner. Therefore, the inhibition by Iban of IKCa channels would be an important mechanism underlying its actions on the functional activity of osteoclasts occurring in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Anderson ME, Braun AP, Wu Y, Lu T, Wu Y, Schulman H, Sung RJ (1998) KN-93, an inhibitor of multifunctional Ca++/calmodulin-dependent protein kinase, decreases early afterdepolarization in rabbit heart. J Pharmacol Exp Ther 287:996–1006

    CAS  PubMed  Google Scholar 

  • Begenisich T, Nakamoto T, Ovitt CE, Nehrke K, Brugnara C, Alper SL, Melvin JE (2004) Physiological roles of the intermediate conductance, Ca2+-activated potassium channel Kcnn4. J Biol Chem 279:47681–47687

    Article  CAS  PubMed  Google Scholar 

  • Clark RB, Sanchez-Chapula J, Salinas-Stefanon E, Duff HJ, Giles WR (1995) Quinidine-induced open channel block of K+ current in rat ventricle. Br J Pharmacol 115:335–343

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Diaz P, Wood AM, Sibley CP, Greenwood SL (2014) Intermediate conductance Ca2+-activated K+ channels modulate human placental trophoblast syncytialization. PLoS ONE 9:e90961

    Article  PubMed Central  PubMed  Google Scholar 

  • Dunn PM (1998) The action of blocking agents applied to the inner face of Ca2+-activated K+ channels from human erythrocytes. J Membr Biol 165:133–143

    Article  CAS  PubMed  Google Scholar 

  • Ebetino FH, Hogan AL, Sun S, Tsoumpra MK, Duan X, Triffitt JT, Kwaasi AA, Dunford JE, Barnett BL, Oppermann U, Lundy MW, Boyde A, Kashemirov BA, McKenna CE, Russell RGG (2011) The relationship between the chemistry and biological activity of the bisphosphonates. Bone 49:20–33

    Article  CAS  PubMed  Google Scholar 

  • Espinosa L, Paret L, Ojeda C, Tourneur Y, Delmas PD, Chenu C (2002) Osteoclast spreading kinetics are correlated with an oscillatory activation of a calcium-dependent potassium current. J Cell Sci 115:3837–3848

    Article  CAS  PubMed  Google Scholar 

  • Fisher JE, Rosenberg E, Santora AC, Reszka AA (2013) In vitro and in vivo responses to high and low doses of nitrogen-containing bisphosphonates suggest engagement of different mechanisms for inhibition of osteoclastic bone resorption. Calcif Tissue Int 92:531–538

    Article  CAS  PubMed  Google Scholar 

  • Gallagher JC, Tella SH (2013) Controversies in osteoporosis management: antiresorptive therapy for preventing bone loss: when to use one or two antiresorptive agents? Clin Obstet Gynecol 56:749–756

    Article  PubMed Central  PubMed  Google Scholar 

  • Grössinger EM, Weiss L, Zierler S, Rebhandl S, Krenn PW, Hinterseer E, Schmölzer J, Asslaber D, Hainzl S, Neureiter D, Egle A, Piñón-Hofbauer J, Hartmann TN, Greil R, Kerschbaum HH (2014) Targeting proliferation of chronic lymphocytic leukemia (CLL) cells through KCa3.1 blockade. Leukemia 28:954–958

    Article  PubMed  Google Scholar 

  • He C, Fam X, Li Y (2013) Toward ubiquitous healthcare services with a novel efficient cloud platform. IEEE Trans Biomed Eng 60:230–234

    Article  PubMed  Google Scholar 

  • Islam S, Hassan F, Tumurkhuu G, Dagvadorj J, Koide N, Naiki Y, Mori I, Yoshida T, Yokochi T (2007) Bacterial lipopolysaccharide induces osteoclast formation in RAW 264.7 macrophage cells. Biochem Biophys Res Commun 360:346–351

    Article  CAS  PubMed  Google Scholar 

  • Jensen BS, Strøbæk D, Olesen SP, Christophersen P (2001) The Ca2+-activated K+ channel of intermediate conductance: a molecular target for novel treatments? Curr Drug Targets 2:401–422

    Article  CAS  PubMed  Google Scholar 

  • Jones H, Birchard Z (2014) Inhibition of KCa3.1 decreases differentiated osteoclast function in RAW264 cells. FASEB J 28:893–921

    Google Scholar 

  • Journè F, Kheddoumi N, Chaboteaux C, Duvillier H, Laurent G, Body J-J (2008) Extracellular calcium increases bisphosphonate-induced growth inhibition of breast cancer cells. Breast Cancer Res 10:R4

    Article  PubMed Central  PubMed  Google Scholar 

  • Kaushal V, Koeberle PD, Wang Y, Schlichter LC (2007) The Ca2+-activated K+ channel KCNN4/KCa3.1 contributes to microglia activation and nitric oxide-dependent degeneration. J Neurosci 27:234–244

    Article  CAS  PubMed  Google Scholar 

  • Kemmer G, Keller S (2010) Nonlinear least-squares data fitting in Excel spreadsheets. Nat Protocol 5:267–281

    Article  CAS  Google Scholar 

  • Komarova SV, Dixon S, Sims SM (2001) Osteoclast ion channels potential targets for antiresorptive drugs. Curr Pharm Des 7:637–654

    Article  CAS  PubMed  Google Scholar 

  • Lallet-Daher H, Roudbaraki M, Bavencoffe A, Mariot P, Gackiere F, Bidaux G, Urbain R, Gosset P, Delcourt P, Fleurisse L, Slomianny C, Dewailly E, Mauroy B, Bonnal JL, Skryma R, Prevarskaya N (2009) Intermediate-conductance Ca2+-activated K+ channels (IKCa1) regulate human prostate cancer cell proliferation through a close control of calcium entry. Oncogene 28:1792–1806

    Article  CAS  PubMed  Google Scholar 

  • Liu SI, Chi CW, Lui WY, Mok KT, Wu CW, Wu SN (1998) Correlation of hepatocyte growth factor-induced proliferation and calcium-activated potassium current in human gastric cancer cell. Biochim Biophys Acta 1368:256–266

    Article  CAS  PubMed  Google Scholar 

  • Marathe DD, Marathe A, Mager DE (2011) Integrated model for denosumab and ibandronate pharmacodynamics in postmenopausal women. Biopharm Drug Dispos 32:471–481

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • McFerrin MB, Turner KL, Cuddapah VA, Sontheimer H (2012) Differential role of IK and BK potassium channels as mediators of intrinsic and extrinsic apoptotic cell death. Am J Physiol Cell Physiol 303:C1070–C1078

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Morales P, Garneau L, Klein H, Lavoie MF, Parent L, Sauvé R (2013) Contribution of the KCa3.1 channel-calmodulin interactions to the regulation of the KCa3.1 gating process. J Gen Physiol 142:37–60

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mosekilde L, Vestergaard P, Rejnmark L (2013) The pathogenesis, treatment and prevention of osteoporosis in men. Drugs 73:15–29

    Article  CAS  PubMed  Google Scholar 

  • Ohya S, Niwa S, Kojima Y, Sasaki S, Sakuragi M, Kohri K, Imaizumi Y (2011) Intermediate-conductance Ca2+-activated K+ channel, KCa3. 1, as a novel therapeutic target for benign prostatic hyperplasia. J Pharmacol Exp Ther 338:528–536

    Article  CAS  PubMed  Google Scholar 

  • Pazianas M (2010) Osteonecrosis of the jaw and the role of macrophages. J Natl Cancer Inst 103:232–240

    Article  PubMed  Google Scholar 

  • Prokopenko V, Kovalishyn V, Shevchuk M, Kopernyk I, Metelytsia L, Romanenko V, Mogilevich S, Kukhar V (2014) Design and synthesis of new potent inhibitors of farnesyl pyrophosphate synthase. Curr Drug Discov Technol 11:133–144

    Article  CAS  PubMed  Google Scholar 

  • Shao W, Orlando RC, Awayda MS (2005) Bisphosphonates stimulate an endogenous nonselective cation channel in Xenopus oocytes: potential mechanism of action. Am J Physiol Cell Physiol 289:C248–C256

    Article  CAS  PubMed  Google Scholar 

  • Shen AY, Tsai JH, Teng HC, Huang MH, Wu SN (2007) Inhibition of intermediate-conductance Ca2+-activated K+ channel and cytoprotective properties of 4-piperidinomethyl-2-isopropyl-5-methylphenol. J Pharm Pharmacol 59:679–685

    Article  CAS  PubMed  Google Scholar 

  • Shin WJ, Kim YK, Song JG, Kim SH, Choi SS, Song JH, Hwang GS (2011) Alterations in QT interval in patients undergoing living donor liver transplantation. Transplant Proc 43:170–173

    Article  PubMed  Google Scholar 

  • So EC, Wu KC, Liang CH, Chen JY, Wu SN (2011) Evidence for activation of BKCa channels by a known inhibitor of focal adhesion kinase, PF573228. Life Sci 89:691–701

    Article  CAS  PubMed  Google Scholar 

  • Suzuki S, Hayakawa T, Kamasaki N, Okada H, Yamamoto H (2008) Conformational analysis of bisphosphonate/calcium complex. Int J Oral Med Sci 7:45–49

    Article  CAS  Google Scholar 

  • Toyama K, Wulff H, Chandy KG, Azam P, Raman G, Saito T, Fujiwara Y, Mattson DL, Das S, Melvin JE, Pratt PF, Hatoum OA, Gutterman DD, Harder DR, Miura H (2008) The intermediate-conductance calcium-activated potassium channel KCa3.1 contributes to atherogenesis in mice and humans. J Clin Invest 118:3025–3037

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tsai KL, Chang HF, Wu SN (2013) The inhibition of inwardly rectifying K channels by memantine in macrophages and microglial cells. Cell Physiol Biochem 31:938–951

    Article  CAS  PubMed  Google Scholar 

  • Valverde P, Kawai T, Taubman MA (2005) Potassium channel-blockers as therapeutic agents to interfere with bone resorption of periodontal disease. J Dent Res 84:488–489

    Article  CAS  PubMed  Google Scholar 

  • Wang CL, Tsai ML, Wu SN (2012) Evidence for mitoxantrone-induced block of inwardly rectifying K+ channels expressed in the osteoclast precursor RAW 264.7 cells differentiated with lipopolysaccharide. Cell Physiol Biochem 30:687–701

    Article  CAS  PubMed  Google Scholar 

  • Wu SN, Yu HS, Jan CR, Li HF, Yu CL (1998) Inhibitory effects of berberine on voltage- and calcium-activated potassium currents in human myeloma cells. Life Sci 62:2283–2294

    Article  CAS  PubMed  Google Scholar 

  • Wu SN, Wu PY, Tsai ML (2011) Characterization of TRPM8-like channels activated by the cooling agent icilin in the macrophage cell line RAW 264.7. J Membr Biol 241:11–20

    Article  CAS  PubMed  Google Scholar 

  • Wulff H, Miller MJ, Hänsel W, Grissmer S, Cahalan MD, Chandy KG (2000) Design of a potent and selective inhibitor of the intermediate-conductance Ca2+-activated K+ channel, IKCa1: a potential immunosuppressant. Proc Natl Acad Sci 97:8151–8156

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wulff H, Kolski-Andreaco A, Sankaranarayanan A, Sabatier JM, Shakkottai V (2007) Modulators of small- and intermediate-conductance calcium-activated potassium channels and their therapeutic indications. Curr Med Chem 14:1437–1457

    Article  CAS  PubMed  Google Scholar 

  • Yang DM, Chi CW, Chang HM, Wu LH, Lee TK, Lin JD, Chen ST, Lee CH (2004) Effects of clodronate on cancer growth and Ca2+ signaling of human thyroid carcinoma cell lines. Anticancer Res 24(3a):1617–1623

    PubMed  Google Scholar 

  • Zhang W, Yang DL, Wang YX, Wang HW, Zhen ZJ, Zhang YZ, Shen Y (2013) In vitro osteoclast-suppressing effect of sodium ibandronate. Chin Med J 126:751–755

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Part of the research leading to the present results was aided by a grant from the National Science Council (NSC-101-2320-B-006-009), Taiwan, through a contract awarded to S.N.W. and from the Aim for the Top University Project, National Cheng Kung University, Tainan City, Taiwan. The authors are grateful to Ming-Chun Hsu for her technical assistance in this work.

Conflict of interest

No conflicts of interest, financial or otherwise, are declared by the author(s).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheng-Nan Wu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 50 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, SN., Huang, YM. & Liao, YK. Effects of Ibandronate Sodium, a Nitrogen-Containing Bisphosphonate, on Intermediate-Conductance Calcium-Activated Potassium Channels in Osteoclast Precursor Cells (RAW 264.7). J Membrane Biol 248, 103–115 (2015). https://doi.org/10.1007/s00232-014-9747-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-014-9747-8

Keywords

Navigation