Skip to main content
Log in

Flag manifolds with strongly positive curvature

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

We obtain a complete description of the moduli spaces of homogeneous metrics with strongly positive curvature on the Wallach flag manifolds \(W^6\), \(W^{12}\) and \(W^{24}\), which are respectively the manifolds of complete flags in \(\mathbb {C}^3\), \(\mathbb {H}^3\) and \(\mathbb {C}\mathrm {a}^3\). Together with our earlier work, this concludes the classification of simply-connected homogeneous spaces that admit a homogeneous metric with strongly positive curvature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. Compare with the normal homogeneous case discussed in [4], Ex. 2.5], in which \(P={\text {Id}}\), \(B_+=0\) and \(B_-(\cdot ,\cdot )=[\cdot ,\cdot ]\). The curvature operator of \((\mathsf {G}/\mathsf {H},Q|_\mathfrak {m})\) is given by \(R_{\mathsf {G}/\mathsf {H}}=R_{\mathsf {G}}+3\alpha -3\mathfrak {b}(\alpha )\), see [4], (2.9)], where \(\alpha =A^*A\) is obtained from the \(A\)-tensor of the submersion \((\mathsf {G},Q)\rightarrow (\mathsf {G}/\mathsf {H},Q|_\mathfrak {m})\). Since \(R_{\mathsf {G}}=\alpha +\beta \), it follows that \(R_{\mathsf {G}/\mathsf {H}}=4R_{\mathsf {G}}-3\beta +3\mathfrak {b}(\beta )\), which is the expression given by (2.1).

  2. This implication can be proved independently of Proposition 5.2. Indeed, positive-definiteness of the second and third blocks \(\widehat{R}^2_{W^\bullet }(\vec {s}, \omega )\) and \(\widehat{R}^3_{W^\bullet }(\vec {s}, \omega )\) directly implies that , \(r=1,2,3\), cf. Remark 5.6; and simultaneous positive-definiteness of the first block \(\widehat{R}^1_{W^\bullet }(\vec {s}, \omega )\) is impossible if the \(s_r\) are all equal, since its determinant is negative.

References

  1. Baez, J.C.: The octonions. Bull. Am. Math. Soc. 39(N.S.), 145–205 (2002)

    MathSciNet  MATH  Google Scholar 

  2. Bérard-Bergery, L.: Les variétés riemanniennes homogènes simplement connexes de dimension impaire à courbure strictement positive. J. Math. Pures Appl. 55(9), 47–67 (1976)

    MathSciNet  MATH  Google Scholar 

  3. Bettiol, R.G., Mendes, R.A.E.: Strongly Nonnegative Curvature (in preparation)

  4. Bettiol, R.G., Mendes, R.A.E.: Strongly Positive Curvature. arXiv:1403.2117

  5. Böhm, C., Wilking, B.: Manifolds with positive curvature operators are space forms. Ann. Math. 167(2), 1079–1097 (2008)

    Article  MATH  Google Scholar 

  6. Grove, K.: Geometry of, and via, symmetries, in conformal, Riemannian and Lagrangian geometry (Knoxville, TN, 2000). Volume 27 of University Lecture Series, American Mathematical Society, Providence, RI, pp. 31–53 (2002)

  7. Grove, K., Verdiani, L., Ziller, W.: An exotic \(T_{1}{\mathbb{S}}^{4}\) with positive curvature. Geom. Funct. Anal. 21, 499–524 (2011)

    Article  MathSciNet  Google Scholar 

  8. Harvey, F.R.: Spinors and Calibrations, Volume 9 of Perspectives in Mathematics, vol. 9. Academic Press, Inc, Boston, MA (1990)

    MATH  Google Scholar 

  9. Püttmann, T.: Optimal pinching constants of odd-dimensional homogeneous spaces. Invent. Math. 138, 631–684 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  10. Püttmann, T.: Injectivity radius and diameter of the manifolds of flags in the projective planes. Math. Z. 246, 795–809 (2004)

    Article  MathSciNet  Google Scholar 

  11. Schwachhöfer, L., Tapp, K.: Homogeneous metrics with nonnegative curvature. J. Geom. Anal. 19, 929–943 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Thorpe, J.A.: The zeros of nonnegative curvature operators. J. Differ. Geom. 5, 113–125 (1971)

    MathSciNet  MATH  Google Scholar 

  13. Thorpe, J.A.: On the curvature tensor of a positively curved \(4\)-manifold. In: Proceedings of the Thirteenth Biennial Seminar of the Canadian Mathematical Congress (Dalhousie Univ., Halifax, N.S., 1971), Vol. 2, Canad. Math. Congr., Montreal, Que., pp. 156–159 (1972)

  14. Valiev, F.M.: Precise estimates for the sectional curvatures of homogeneous Riemannian metrics on Wallach spaces, Sibirsk. Mat. Zh. 20, 248–262, 457 (1979)

  15. Verdiani, L., Ziller, W.: Positively curved homogeneous metrics on spheres. Math. Z. 261, 473–488 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Wallach, N.R.: Compact homogeneous Riemannian manifolds with strictly positive curvature. Ann. Math. 96(2), 277–295 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  17. Wilking, B.: Riemannsche Submersionen und Beispiele kompakter Mannigfaltigkeiten positiver Schnittkrümmung. Seminar notes , University of Münster, (1998)

  18. Wilking, B., Ziller, W.: Revisiting homogeneous spaces with positive curvature. arXiv:1503.06256

  19. Ziller, W.: Examples of Riemannian manifolds with non-negative sectional curvature. Surv. Differ. Geom. 11, 63–102 (2007)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

It is a pleasure to thank Karsten Grove and Wolfgang Ziller for valuable suggestions. We also acknowledge the hospitality of the Mathematisches Forschungsinstitut Oberwolfach, where many results in this paper were proved.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo A. E. Mendes.

Additional information

Renato G. Bettiol is partially supported by the NSF Grant DMS-1209387, USA. Ricardo A. E. Mendes is supported by SFB878 Groups, Geometry & Actions.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bettiol, R.G., Mendes, R.A.E. Flag manifolds with strongly positive curvature. Math. Z. 280, 1031–1046 (2015). https://doi.org/10.1007/s00209-015-1464-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-015-1464-1

Mathematics Subject Classification

Navigation