Skip to main content
Log in

Flag structures on real 3-manifolds

  • Original Paper
  • Published:
Geometriae Dedicata Aims and scope Submit manuscript

Abstract

We define flag structures on a real three manifold M as the choice of two complex lines on the complexified tangent space at each point of M. We suppose that the plane field defined by the complex lines is a contact plane and construct an adapted connection on an appropriate principal bundle. This includes path geometries and CR structures as special cases. We prove that the null curvature models are given by totally real submanifolds in the flag space \(\mathbf{SL}(3,{{\mathbb {C}}})/B\), where B is the subgroup of upper triangular matrices. We also define a global invariant which is analogous to the Chern–Simons secondary class invariant for three manifolds with a Riemannian structure and to the Burns–Epstein invariant in the case of CR structures. It turns out to be constant on homotopy classes of totally real immersions in flag space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barbot, T.: Flag structures on Seifert manifolds. Geom. Topol. 5, 227–266 (2001)

    Article  MathSciNet  Google Scholar 

  2. Bergeron, N., Falbel, E., Guilloux, A.: Tetrahedra of flags, volume and homology of \({\bf SL}(3)\). Geom. Topol. 18(4), 1911–1971 (2014)

    Article  MathSciNet  Google Scholar 

  3. Biquard, O., Herzlich, M., Rumin, M.: Diabatic limit, eta invariants and Cauchy–Riemann manifolds of dimension 3. Ann. Sci. École Norm. Sup. (4) 40(4), 589–631 (2007)

    Article  MathSciNet  Google Scholar 

  4. Borrelli, V.: On totally real isotopy classes. Int. Math. Res. Not. 2, 89–109 (2002)

    Article  MathSciNet  Google Scholar 

  5. Bryant, R.: Élie Cartan and geometric duality. Preprint (1998)

  6. Bryant, R., Griffiths, P., Hsu, L.: Toward a geometry of differential equations. Geometry, topology, and physics, 1–76. In: Conference of Proceedings Lecture Notes Geom. Topology, IV. International Press, Cambridge, MA, (1995)

  7. Burns, D., Epstein, C.L.: A global invariant for three-dimensional CR-manifolds. Invent. Math. 92(2), 333–348 (1988)

    Article  MathSciNet  Google Scholar 

  8. Burns, D., Shnider, S.: Real Hypersurfaces in complex manifolds. Proc. Symp. Pure Math. 30, 141–168 (1977)

    Article  MathSciNet  Google Scholar 

  9. Burns, D., Shnider, S.: Spherical hypersurfaces in complex manifolds. Invent. Math. 33, 223–246 (1976)

    Article  MathSciNet  Google Scholar 

  10. Cartan, E.: Sur les variétés connexion projective. Bull. Soc. Math. Fr. 52, 205–241 (1924)

    Article  Google Scholar 

  11. Cartan, E.: Sur la géométrie pseudo-conforme des hypersurfaces de deux variables complexes. I. Ann. Math. Pura Appl. (4) 11, 17–90 (1932). (or Ouevres II, 2, 1231–1304)

    Article  Google Scholar 

  12. Cartan, E.: Sur la géométrie pseudo-conforme des hypersurfaces de deux variables complexes, II. Ann. Scuola Norm. Sup. Pisa (2) 1, 333–354 (1932). (or Ouevres III, 2, 1217–1238)

    MATH  Google Scholar 

  13. Cheng, J.H., Lee, J.M.: The Burns–Epstein invariant and deformation of CR structures. Duke Math. J. 60(1), 221–254 (1990)

    Article  MathSciNet  Google Scholar 

  14. Chern, S.S., Moser, J.: Real hypersurfaces in complex manifolds. Acta Math. 133, 219–271 (1974)

    Article  MathSciNet  Google Scholar 

  15. Deraux, M., Falbel, E.: Complex hyperbolic geometry of the figure-eight knot. Geom. Topol. 19(1), 237–293 (2015)

    Article  MathSciNet  Google Scholar 

  16. Falbel, E., Santos Thebaldi, R.: A flag structure on a cusped hyperbolic 3-manifold. Pac. J. Math. 278(1), 51–78 (2015)

    Article  MathSciNet  Google Scholar 

  17. Forstneric, F.: On totally real embeddings into \({\mathbb{C}}^n\). Expos. Math. 4(3), 243–255 (1986)

    MATH  Google Scholar 

  18. Ivey, T.A., Landsberg, J.M.: Cartan for Beginners: Differential Geometry Via Moving Frames and Exterior Differential Systems. Graduate Studies in Mathematics, 61. American Mathematical Society, Providence (2003)

    MATH  Google Scholar 

  19. Jacobowitz, H.: An Introduction to CR Structures. vol. 32, Mathematical Surveys and Monographs. American Mathematical Society, Providence (1990)

    Book  Google Scholar 

  20. Lees, J.A.: On the classification of Lagrange immersions. Duke Math. J. 43(2), 217–224 (1976)

    Article  MathSciNet  Google Scholar 

  21. Schwartz, R.E.: Spherical CR Geometry and Dehn Surgery. Annals of Mathematics Studies, 165. Princeton University Press, Princeton (2007)

    Book  Google Scholar 

  22. Webster, S.M.: Pseudo-Hermitian structures on a real hypersurface. J. Differ. Geom. 13(1), 25–41 (1978)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Falbel.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Falbel, E., Veloso, J.M. Flag structures on real 3-manifolds. Geom Dedicata 209, 149–176 (2020). https://doi.org/10.1007/s10711-020-00528-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10711-020-00528-4

Keywords

Navigation