Skip to main content
Log in

On globally defined semianalytic sets

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

In this work we present the concept of C-semianalytic subset of a real analytic manifold and more generally of a real analytic space. C-semianalytic sets can be understood as the natural generalization to the semianalytic setting of global analytic sets introduced by Cartan (C-analytic sets for short). More precisely S is a C-semianalytic subset of a real analytic space \((X,{\mathcal {O}}_X)\) if each point of X has a neighborhood U such that \(S\cap U\) is a finite boolean combinations of global analytic equalities and strict inequalities on X. By means of paracompactness C-semianalytic sets are the locally finite unions of finite boolean combinations of global analytic equalities and strict inequalities on X. The family of C-semianalytic sets is closed under the same operations as the family of semianalytic sets: locally finite unions and intersections, complement, closure, interior, connected components, inverse images under analytic maps, sets of points of dimension k, etc. although they are defined involving only global analytic functions. In addition, we characterize subanalytic sets as the images under proper analytic maps of C-semianalytic sets. We prove also that the image of a C-semianalytic set S under a proper holomorphic map between Stein spaces is again a C-semianalytic set. The previous result allows us to understand better the structure of the set N(X) of points of non-coherence of a C-analytic subset X of a real analytic manifold M. We provide a global geometric-topological description of N(X) inspired by the corresponding local one for analytic sets due to Tancredi and Tognoli (Riv Mat Univ Parma (4) 6:401–405, 1980), which requires complex analytic normalization. As a consequence it holds that N(X) is a C-semianalytic set of dimension \({\le }\dim (X)-2\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Acquistapace, F., Broglia, F., Shiota, M.: The finiteness property and Łojasiewicz inequality for global semianalytic sets. Adv. Geom. 5, 453–466 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  2. Acquistapace, F., Broglia, F., Tognoli, A.: Sull’insieme di non-coerenza di un insieme analitico reale. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 55, 42–45 (1973)

  3. Andradas, C., Bröcker, L., Ruiz, J.M.: Minimal generation of basic open semianalytic sets. Invent. Math. 92(2), 409–430 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  4. Andradas, C., Bröcker, L., Ruiz, J.M.: Constructible sets in real geometry. In: Ergeb. Math., vol. 33. Springer, Berlin (1996)

  5. Andradas, C., Castilla, A.: Connected components of global semianalytic subsets of 2-dimensional analytic manifolds. J. Reine Angew. Math. 475, 137–148 (1996)

    MathSciNet  MATH  Google Scholar 

  6. Andreotti, A., Stoll, W.: Analytic and algebraic dependence of meromorphic functions. In: Lecture Notes in Mathematics, vol. 234. Springer, Berlin (1971)

  7. Bierstone, E., Milman, P.D.: Semianalytic and subanalytic sets. Inst. Hautes Études Sci. Publ. Math. 67, 5–42 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bierstone, E., Milman, P.D.: Subanalytic geometry. In: Model Theory, Algebra, and Geometry, pp. 151–172. Mathematical Sciences Research Institute Publications, vol. 39. Cambridge University Press, Cambridge (2000)

  9. Bruhat, F., Cartan, H.: Sur les composantes irréductibles d’un sous-ensemble analytique-réel. C. R. Acad. Sci. Paris 244, 1123–1126 (1957)

    MathSciNet  MATH  Google Scholar 

  10. Cartan, H.: Variétés analytiques réelles et variétés analytiques complexes. Bull. Soc. Math. Fr. 85, 77–99 (1957)

    MathSciNet  MATH  Google Scholar 

  11. Cartan, H.: Sur les fonctions de plusieurs variables complexes: les espaces analytiques. In: Proceedings of the International Congress of Mathematicians 1958, pp. 33–52. Cambridge University Press, New York (1960)

  12. Denkowska, Z.: La continuité de la section d’un ensemble semi-analytique et compact. Ann. Polon. Math. 37(3), 231–242 (1980)

    MathSciNet  MATH  Google Scholar 

  13. Fensch, W.: Reell-analytische Strukturen. Schr. Math. Inst. Univ. Münster 34, 56 pp. (1966)

  14. Fernando, J.F.: On the irreducible components of globally defined semianalytic sets (2015). Preprint RAAG. arXiv:1503.00990

  15. Gabrielov, A.: Projections of semi-analytic sets. Funct. Anal. Appl. 2(4), 282–291 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  16. Galbiati, M.: Stratifications et ensemble de non-cohérence d’un espace analytique réel. Invent. Math. 34(2), 113–128 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  17. Galbiati, M.: Sur l’image d’un morphisme analytique réel propre. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 3(2), 311–319 (1976)

  18. Guaraldo, F., Macrì, P., Tancredi, A.: Topics on real analytic spaces. In: Advanced Lectures in Mathematics. Friedr. Vieweg & Sohn, Braunschweig (1986)

  19. Gunning, R., Rossi, H.: Analytic Functions of Several Complex Variables. Prentice Hall, Englewood Cliff (1965)

    MATH  Google Scholar 

  20. Hardt, R.M.: Homology and images of semianalytic sets. Bull. Am. Math. Soc. 80, 675–678 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  21. Hardt, R.M.: Homology theory for real analytic and semianalytic sets. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 2(1), 107–148 (1975)

  22. Hironaka, H.: Introduction aux ensembles sous-analytiques. In: Rédigé par André Hirschowitz et Patrick Le Barz. Singularités à Cargèse (Rencontre Singularités en Géom. Anal., Inst. Études Sci., Cargèse, 1972), pp. 13–20. Asterisque, 7 et 8. Soc. Math. France, Paris (1973)

  23. Hironaka, H.: Subanalytic sets. In: Number Theory, Algebraic Geometry and Commutative Algebra. In honor of Yasuo Akizuki, pp. 453–493. Kinokuniya, Tokyo (1973)

  24. Hironaka, H.: Introduction to real-analytic sets and real-analytic maps. In: Quaderni dei Gruppi di Ricerca Matematica del Consiglio Nazionale delle Ricerche. Istituto Matematico “L. Tonelli” dell’Università di Pisa, Pisa (1973)

  25. Hironaka, H.: Stratification and flatness. In: Real and Complex Singularities (Proc. Ninth Nordic Summer School/NAVF Sympos. Math., Oslo, 1976), pp. 199-265. Sijthoff and Noordhoff, Alphen aan den Rijn (1977)

  26. de Jong, T., Pfister, G.: Local analytic geometry. Basic theory and applications. In: Advanced Lectures in Mathematics. Friedr. Vieweg & Sohn, Braunschweig (2000)

  27. Kurdyka, K.: Des applications du théorème de Puiseux dans la théorie des ensembles semi-analytiques dans \(R^2\). Univ. Iagel. Acta Math. 26, 105–113 (1987)

    MathSciNet  MATH  Google Scholar 

  28. Łojasiewicz, S.: Ensembles semi-analytiques, Cours Faculté des Sciences d’Orsay, Mimeographié I.H.E.S., Bures-sur-Yvette, July (1965). http://perso.univ-rennes1.fr/michel.coste/Lojasiewicz

  29. Łojasiewicz, S.: Triangulation of semi-analytic sets. Ann. Scuola Norm. Sup. Pisa 3(18), 449–474 (1964)

    MathSciNet  MATH  Google Scholar 

  30. Matsumura, H.: Commutative algebra, 2nd edn. In: Mathematics Lecture Note Series, vol. 56. Benjamin/Cummings Publishing Co., Inc., Reading (1980)

  31. Narasimhan, R.: Introduction to the theory of analytic spaces. In: Lecture Notes in Mathematics, vol. 25. Springer, Berlin (1966)

  32. Narasimhan, R.: Analysis on real and complex manifolds. In: Advanced Studies in Pure Mathematics, vol. 1. Masson & Cie, Éditeurs/North-Holland Publishing Co., Paris/Amsterdam (1968)

  33. Narasimhan, R.: A note on Stein spaces and their normalisations. Ann. Scuola Norm. Sup. Pisa 3(16), 327–333 (1962)

    MathSciNet  MATH  Google Scholar 

  34. Oka, K.: Sur les fonctions analytiques de plusieurs variables. VIII. Lemme fondamental. J. Math. Soc. Jpn. 3, 204–214 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  35. Parusiński, A.: Lipschitz properties of semi-analytic sets. Ann. Inst. Fourier (Grenoble) 38(4), 189–213 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  36. Pawłucki, W.: Sur les points réguliers d’un ensemble semi-analytique. Bull. Pol. Acad. Sci. Math. 32(9–10), 549–553 (1984)

    MATH  Google Scholar 

  37. Quarez, R.: The Noetherian space of abstract locally Nash sets. Commun. Algebra 26(6), 1945–1966 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  38. Ruiz, J.M.: On the real spectrum of a ring of global analytic functions. In: Algèbre, 84–95. Publ. Inst. Rech. Math. Rennes, 1986-4. Univ. Rennes I, Rennes (1986)

  39. Ruiz, J.M.: On the connected components of a global semianalytic set. J. Reine Angew. Math. 392, 137–144 (1988)

    MathSciNet  MATH  Google Scholar 

  40. Ruiz, J.M.: On the topology of global semianalytic sets. In: Real Analytic and Algebraic Geometry (Trento, 1988), pp. 237–246. Lecture Notes in Mathematics, vol. 1420. Springer, Berlin (1990)

  41. Shiota, M.: Geometry of subanalytic and semialgebraic sets. In: Progress in Mathematics, vol. 150. Birkhäuser Boston, Inc., Boston (1997)

  42. Stasica, J.: Smooth points of a semialgebraic set. Ann. Polon. Math. 82(2), 149–153 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  43. Tancredi, A., Tognoli, A.: On a decomposition of the points of noncoherence of a real analytic space. Riv. Mat. Univ. Parma (4) 6, 401–405 (1980)

  44. Tognoli, A.: Proprietà globali degli spazi analitici reali. Ann. Mat. Pura Appl. 4(75), 143–218 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  45. Whitney, H., Bruhat, F.: Quelques propiétés fondamentales des ensembles analytiques réels. Comment. Math. Helv. 33, 132–160 (1959)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José F. Fernando.

Additional information

Authors supported by Spanish GAAR MTM2011-22435, Spanish MTM2014-55565 and the “National Group for Algebraic and Geometric Structures, and their Applications” (GNSAGA - INdAM). F. Acquistapace and F. Broglia are also supported by Italian MIUR. J. F. Fernando is also supported by Grupos UCM 910444. This article is the fruit of the close collaboration of the authors in the last 10 years and has been mainly written during a 1-year research stay of J. F. Fernando in the Dipartimento di Matematica of the Università di Pisa. J. F. Fernando would like to thank the department for the invitation and the very pleasant working conditions. The 1-year research stay of the third author is partially supported by MECD Grant PRX14/00016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Acquistapace, F., Broglia, F. & Fernando, J.F. On globally defined semianalytic sets. Math. Ann. 366, 613–654 (2016). https://doi.org/10.1007/s00208-015-1342-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-015-1342-5

Mathematics Subject Classification

Navigation