Skip to main content
Log in

End-point maximal \(L^1\)-regularity for the Cauchy problem to a parabolic equation with variable coefficients

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

We consider maximal \(L^1\)-regularity for the Cauchy problem to a parabolic equation in the Besov space \(\dot{B}_{p,1}^0(\mathbb {R}^n)\) with \(1\le p\le \infty \). The estimate obtained here is not available by abstract theory of the class of unconditional martingale differences, because the end-point Besov space is included. We consider the end-point estimate and show that the optimality of maximal regularity in \(L^1\) for the linear parabolic equation with variable coefficients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. This was noticed by Iwabuchi [25].

  2. The fractional derivative is defined by \(|\nabla |^{\alpha }u\equiv \mathcal {F}^{-1}\big [|\xi |^{\alpha }\widehat{u(\xi )}\big ]\). If \(\alpha =2\) then this can be taken as any second derivatives \(\partial _k\partial _{\ell }\) with \(1\le k,\ell \le n\).

References

  1. Abidi, H., Paicu, M.: Existence globale pour un fluide inhomogène. Ann. Inst. Fourier (Grenoble) 57, 883–917 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  2. Amann, H.,: Linear and Quasilinear Parabolic Problems. Vol I Abstract Linear Theory, Monographs in Math., vol. 89. Birkhäuser Verlag, Basel (1995)

  3. Bahouri, H., Chemin, J.-Y., Danchin, R.: Fourier Analysis and Nonlinear Partial Differential Equations. Grundelehren der Mathematischen Wissenschften. Springer, Berlin (2011)

    Book  MATH  Google Scholar 

  4. Benedek, A., Calderón, A.P., Panzone, R.: Convolution operators on Banach space valued functions. Proc. Natl. Acad. Sci. USA 48, 356–365 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bergh, J., Löfström, J.: Interpolation Spaces. An Introduction. Springer, Berlin (1976)

    Book  MATH  Google Scholar 

  6. Brenner, P., Thomée, V., Wahlbin, L.: Besov Spaces and Applications to Difference Methods for Initial Value Problems. Lecture Notes in Math, vol. 434. Springer, Berlin (1975)

  7. Cannone, M., Planchon, F., Schonbek, M.: A critical functional framework for the inhomogeneous Navier–Stokes equations in the half-space. Comm. P.D.E., 25, 903–924 (2000)

  8. Chen, Q., Miao, C., Zhang, Z.: Well-posedness in critical spaces for the compressible Navier-Stokes equations with density dependent viscosities. Rev. Mat. Iberoamericana 26(3), 915–946 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chemin, J.-Y.: Théorèmes d’unicité pour le système de Navier-Stokes tridimensionnel (French) [Uniqueness theorems for the three-dimensional Navier-Stokes system]. J. Anal. Math. 77, 27–50 (1999)

    Article  MathSciNet  Google Scholar 

  10. Cheman, J.-Y.: Localization in Fourier space and Navier–Stokes system. Phase space analysis of partial differential equations. Pubbl. cent. Ric. Mat. Giorge, Scuola Norm. Sup., Pisa, I, 53–135 (2004)

  11. Clément, Ph., Prüss, J.: Global existence for a semilinear parabolic Volterra equation. Math. Z. 209, 17–26 (1992)

  12. Danchin, R.: Density-dependent incompressible viscous fluids in critical spaces. Proc. R. Soc. Edinb. 133A, 1311–1334 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  13. Danchin, R.: On the uniqueness in critical spaces for compressible Navier-Stokes equations. Nonlinear Differ. Equ. Appl. 12, 111–128 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  14. Danchin, R.: Well-posedness in critical spaces for barotropic viscous fluids with truly not constant density. Comm. Partial Differ. Equ. 32, 1373–1397 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. Danchin, R., Mucha, P.B.: A critical functional framework for the inhomogeneous Navier-Stokes equations in the half-space. J. Funct. Anal. 256, 881–927 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Da Prato, G., Grisvard, P.: Sommes d’opérateurs linéaires et équations différentielles opérationelles. J. Math. Pure Appl. 54, 305–387 (1975)

    MATH  Google Scholar 

  17. Denk, R., Hieber, M., Prüss, J.: \({\cal R}\)-boundedness, Fourier multipliers and problems of elliptic and parabolic type. Memoirs AMS, vol. 166(788) (2003)

  18. Dore, G., Venni, A.: On the closedness of the sum of two closed operators. Math. Z. 196, 189–201 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  19. Frazier, M., Jawerth, B.: Decomposition of Besov spaces. Indiana Univ. Math. J. 34, 777–799 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  20. Giga, Y., Saal, J.: \(L^1\) maximal regularity for the Laplacian and applications. Discrete Contin. Dyn. Syst. I, 495–504 (2011)

  21. Haspot, B.: Well-posedness in critical spaces for the system of compressible Navier-Stokes in larger spaces. J. Differ. Equ. 251, 2262–2295 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  22. Hieber, M., Prüss, J.: Heat kernels and maximal \(L^p\) estimates for parabolic evolution equations. Comm. P.D.E., 22, 1674–1669 (1997)

  23. Hmidi, T., Keraani, S.: On the global well-posedness of the two-dimensional Boussinesq system with a zero diffusivity. Adv. Differ. Equ. 12(4), 461–480 (2007)

    MathSciNet  MATH  Google Scholar 

  24. Iwabuchi, T.: Global solutions for the critical Burgers equation in the Besov spaces and the large time behavior. Ann. I. H. Poincaré 32, 687–713 (2015)

  25. Iwabuchi, T.: Maximal regularity for parabolic equation in the modulation spaces, private communication

  26. Kalton, N., Weis, L.: The \(H^\infty \)-calculus and sums of closed operators. Math. Ann. 321, 319–345 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  27. Ladyzhenskaya, O.A., Solonnikov, V.A., Ural’tseva, N.N.: Linear and Quasilinear Equations of Parabolic Type. Amer. Math. Soc. Transl. Math. Monographs, Providence (1968)

    MATH  Google Scholar 

  28. Ogawa, T., Shimizu, S.: The drift diffusion system in two-dimensional critical Hardy space. J. Funct. Anal. 255, 1107–1138 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  29. Ogawa, T., Shimizu, S.: End-point maximal regularity and its application to two-dimensional Keller-Segel system. Math. Z. 264, 601–628 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  30. Peetre, J.: New Thoughts on Besov Spaces. Duke University Mathematics Series, No. 1, Duke University, Durham, NC, 50 (1976)

  31. Triebel, H.: Theory of Function Spaces. Birkhäuser, Basel (1983)

    Book  MATH  Google Scholar 

  32. Weis, L.: Operator-valued Fourier multiplier theorems and maximal \(L_p\)-regularity. Math. Ann. 319, 735–758 (2001)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the anonymous referees for pointing out mistakes in the first version of the manuscript and providing many helpful suggestions. All the comments have improved the present paper considerably. Thanks are also due to Professor Masashi Misawa and Professor Jan Prüss for their helpful comments on the variable coefficient case, and to Professor Tsukasa Iwabuchi for discussions on maximal regularity in the modulation spaces [25]. The work of the first author is partially supported by JSPS, Grant-in-Aid for Scientific Research S #25220702. The work of the second author is partially supported by JSPS, Grant-in-Aid for Scientific Research B #24340025 and the Alexander von Humboldt Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Senjo Shimizu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ogawa, T., Shimizu, S. End-point maximal \(L^1\)-regularity for the Cauchy problem to a parabolic equation with variable coefficients. Math. Ann. 365, 661–705 (2016). https://doi.org/10.1007/s00208-015-1279-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-015-1279-8

Mathematics Subject Classification

Navigation