Skip to main content
Log in

Semisimple types for \(p\)-adic classical groups

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

We construct, for any symplectic, unitary or special orthogonal group over a locally compact nonarchimedean local field of odd residual characteristic, a type for each Bernstein component of the category of smooth representations, using Bushnell–Kutzko’s theory of covers. Moreover, for a component corresponding to a cuspidal representation of a maximal Levi subgroup, we prove that the Hecke algebra is either abelian, or a generic Hecke algebra on an infinite dihedral group, with parameters which are, at least in principle, computable via results of Lusztig. In an appendix, we make a correction to the proof of a result of the second author: that every irreducible cuspidal representation of a classical group as considered here is irreducibly compactly-induced from a type.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bernstein, J.N.: Le “centre” de Bernstein. In: Representations of Reductive Groups Over a Local Field, Travaux en Cours, pp. 1–32. Hermann, Paris (1984, Written by P. Deligne)

  2. Blasco, L., Blondel, C.: Types induits des paraboliques maximaux de \(\text{ Sp }_4(F)\) et \(\text{ GSp }_4(F)\). Ann. Inst. Fourier (Grenoble) 49(6), 1805–1851 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  3. Blasco, L.: Description du dual admissible de \(\text{ U }(2,1)(F)\) par la théorie des types de C. Bushnell et P. Kutzko. Manuscripta Math. 107(2), 151–186 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  4. Blasco, L., Blondel, C.: Algèbres de Hecke et séries principales généralisées de \(\text{ Sp }_4(F)\). Proc. Lond. Math. Soc. (3) 85(3), 659–685 (2002)

  5. Blondel, C.: Propagation de paires couvrantes dans les groupes symplectiques. Represent. Theory 10, 399–434 (2006, electronic)

    Google Scholar 

  6. Blondel, C.: Représentation de Weil et beta-extensions (2010). arXiv:1001.0129v2

  7. Broussous, P., Sécherre, V., Stevens, S.: Smooth representations of \(\text{ GL }_m(D)\) V: Endo-classes. Doc. Math. 17, 23–77 (2012)

    MATH  MathSciNet  Google Scholar 

  8. Broussous, P., Stevens, S.: Buildings of classical groups and centralizers of Lie algebra elements. J. Lie Theory 19(1), 55–78 (2009)

    MATH  MathSciNet  Google Scholar 

  9. Bushnell, C.J., Kutzko, P.C.: The admissible dual of \(\text{ GL }({\rm N})\) via compact open subgroups. In: Annals of Mathematical Studies. Princeton University Press, Princeton (1993)

  10. Bushnell, C.J., Kutzko, P.C.: The admissible dual of \(\text{ SL }(N)\). II. Proc. Lond. Math. Soc. (3) 68(2), 317–379 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  11. Bushnell, C.J., Kutzko, P.C.: Smooth representations of reductive \(p\)-adic groups: structure theory via types. Proc. Lond. Math. Soc. (3), 77(3), 582–634 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  12. Bushnell, C.J., Kutzko, P.C.: Semisimple types in \(\text{ GL }_n\). Compositio Math. 119(1), 53–97 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  13. Bushnell, C.J., Kutzko, P.C.: Types in reductive \(p\)-adic groups: the Hecke algebra of a cover. Proc. Am. Math. Soc. 129(2), 601–607 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  14. Dat, J.-F.: Finitude pour les représentations lisses de groupes \(p\)-adiques. J. Inst. Math. Jussieu 8(2), 261–333 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  15. Goldberg, D., Kutzko, P., Stevens, S.: Covers for self-dual supercuspidal representations of the Siegel Levi subgroup of classical \(p\)-adic groups. Int. Math. Res. Not. 2007, Art. ID rnm085, 31 (2007). doi:10.1093/imrn/rnm085

  16. Goldberg, D., Roche, A.: Types in \(\text{ SL }_n\). Proc. Lond. Math. Soc. (3), 85(1), 119–138 (2002)

  17. Goldberg, D., Roche, A.: Hecke algebras and \(\text{ SL }_n\)-types. Proc. Lond. Math. Soc. (3), 90(1), 87–131 (2005)

  18. Howlett, R.B., Lehrer, G.I.: Induced cuspidal representations and generalised Hecke rings. Invent. Math. 58(1), 37–64 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  19. Kutzko, P., Morris, L.: Level zero Hecke algebras and parabolic induction: the Siegel case for split classical groups. Int. Math. Res. Not. 2006, Art. ID 97957, 39 (2006). doi:10.1155/IMRN/2006/97957

  20. Lusztig, G.: Characters of reductive groups over a finite field. Annals of Mathematics Studies, vol. 107. Princeton University Press, Princeton (1984)

  21. Moeglin, C.: Points de réductibilité pour les induites de cuspidales. J. Algebra 268(1), 81–117 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  22. Morris, L.: Tamely ramified intertwining algebras. Invent. Math. 114(1), 1–54 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  23. Morris, L.: Level zero \( G\)-types. Compositio Math. 118(2), 135–157 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  24. Moy, A., Prasad, G.: Jacquet functors and unrefined minimal \(K\)-types. Comment. Math. Helv. 71(1), 98–121 (1996)

    Google Scholar 

  25. Sécherre, V., Stevens, S.: Représentations lisses de \(\text{ GL }_m(D)\). IV. Représentations supercuspidales. J. Inst. Math. Jussieu 7(3), 527–574 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  26. Sécherre, V., Stevens, S.: Smooth representations of \(\text{ GL }_m(D)\). VI. Semisimple types. Int. Math. Res. Not. IMRN 2012(13), 2994–3039 (2012)

  27. Shahidi, F.: Twisted endoscopy and reducibility of induced representations for \(p\)-adic groups. Duke Math. J. 66(1), 1–41 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  28. Stevens, S.: Semisimple characters for \(p\)-adic classical groups. Duke Math. J. 127(1), 123–173 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  29. Stevens, S.: The supercuspidal representations of \(p\)-adic classical groups. Invent. Math. 172(2), 289–352 (2008)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

This paper has been a long time coming. The second author would like to thank Muthu Krishnamurthy for asking the question which prompted him to get on and finish it. He would also like to thank Laure Blasco, Corinne Blondel and Van-Dinh Ngo for pointing out some mistakes in [29] and especially Corinne Blondel for many useful discussions. This work was supported by the Engineering and Physical Sciences Research Council (grants GR/T21714/01, EP/G001480/1 and EP/H00534X/1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaun Stevens.

Appendix A: Correction to the proof of [29, Theorem 7.14]

Appendix A: Correction to the proof of [29, Theorem 7.14]

In this appendix, we give the correction to the proof of the main result of [29] (Theorem 7.14), with the newly corrected definition of cuspidal type from Definition 4.3, which we repeat here, recalling that \(\mathrm{G}\) has compact centre:

A cuspidal type for \(\mathrm{G}\) is a pair \((\mathrm{J},\lambda )\), where \(\mathrm{J}=\mathrm{J}(\beta ,\varLambda )\) for some skew semisimple stratum \([\varLambda ,n,0,\beta ]\) such that

  • \(\mathrm{G}_\mathrm{E}\) has compact centre and

  • \(\mathrm{P}^{\mathsf{{o}}}(\varLambda _{{{\mathcal{O }}_\mathrm{E}}})\) a maximal parahoric subgroup of \(\mathrm{G}_\mathrm{E}\),

and \(\lambda =\kappa \otimes \tau \), for \(\kappa \)\(\beta \)-extension and \(\tau \) the inflation of an irreducible cuspidal representation of \(\mathrm{J}/\mathrm{J}^1\simeq \mathrm{P}(\varLambda _{{{\mathcal{O }}_\mathrm{E}}})/\mathrm{P}_1(\varLambda _{{{\mathcal{O }}_\mathrm{E}}})\).

Remark A.1

We thank Laure Blasco, Corinne Blondel and Van-Dinh Ngo for pointing out the problem with the definition in [29, Definition 6.17]. There, the two conditions on the stratum \([\varLambda ,n,0,\beta ]\) in Definition 4.3 are replaced by the (insufficient) condition that \(\mathfrak A (\varLambda _{{{\mathcal{O }}_\mathrm{E}}})\) be a maximal self-dual \({{\mathcal{O }}_\mathrm{E}}\)-order in \(\mathrm{B}\).

Firstly, this is not enough to guarantee that \(\mathrm{P}^{\mathsf{{o}}}(\varLambda _{{{\mathcal{O }}_\mathrm{E}}})\) be a maximal parahoric subgroup of \(\mathrm{G}_\mathrm{E}\): for example, if \(\mathrm{G}_\mathrm{E}\) is a quasi-split ramified unitary group in \(2\) variables then, for one of the two (up to conjugacy) maximal self-dual \({{\mathcal{O }}_\mathrm{E}}\)-orders, the corresponding parahoric subgroup is an Iwahori subgroup, so not maximal.

Secondly, even if \(\mathrm{P}^{\mathsf{{o}}}(\varLambda _{{{\mathcal{O }}_\mathrm{E}}})\) is a maximal parahoric subgroup, it can still happen that its normalizer in \(\mathrm{G}_\mathrm{E}\) is not compact: this happens precisely when \(\mathrm{G}_\mathrm{E}\) has a factor isomorphic to the split torus \(\mathrm{SO}(1,1)(\mathrm{F})\), which can only happen when \(\mathrm{G}\) is an even-dimensional orthogonal group and \(\beta _i=0\), \(\dim _\mathrm{F}\mathrm{V}^i=2\), for some \(i\in \mathrm{I}_0\). The condition that \(\mathrm{G}_\mathrm{E}\) have compact centre rules out exactly this possibility.

In particular, with the definition of cuspidal type \((\mathrm{J},\lambda )\) given here, the proof of [29, Proposition 6.18] is valid, and c-Ind\(_\mathrm{J}^\mathrm{G}\lambda \) is an irreducible cuspidal representation of \(\mathrm{G}\).

1.1 A.1

In this paragraph we indicate the minor changes that must be made to [29, §7.2] in order to correct the proof of the main result there [29, Theorem 7.14]: every irreducible cuspidal representation of \(\mathrm{G}\) contains a cuspidal type. This paragraph should be read alongside that paper and we will make free use of notations from there.

Suppose \(\pi \) is an irreducible representation of \(\mathrm{G}\) and suppose that there is a pair \(([\varLambda ,n,0,\beta ],\theta )\), consisting of a skew semisimple stratum \([\varLambda ,n,0,\beta ]\) and a semisimple character \(\theta \in \mathcal C _-(\varLambda ,0,\beta )\), such that \(\pi \) contains \(\theta \). Suppose moreover that, for fixed \(\beta \), we have chosen a pair for which the parahoric subgroup \(\mathrm{P}^{\mathsf{{o}}}(\varLambda _{{\mathcal{O }}_\mathrm{E}})\) is minimal amongst such pairs. If \(\kappa \) is a standard \(\beta \)-extension then \(\pi \) also contains a representation \(\vartheta =\kappa \otimes \rho \) of \(\mathrm{J}^{\mathsf{{o}}}\), for \(\rho \) an irreducible representation of \(\mathrm{J}^{\mathsf{{o}}}/\mathrm{J}^1\simeq \mathrm{P}^{\mathsf{{o}}}(\varLambda _{{\mathcal{O }}_\mathrm{E}})/\mathrm{P}_1(\varLambda _{{\mathcal{O }}_\mathrm{E}})\). By [29, Lemma 7.4], the minimality of \(\mathrm{P}^{\mathsf{{o}}}(\varLambda _{{\mathcal{O }}_\mathrm{E}})\) implies that the representation \(\rho \) is cuspidal.

We suppose that either the parahoric subgroup \(\mathrm{P}^{\mathsf{{o}}}(\varLambda _{{\mathcal{O }}_\mathrm{E}})\) is not maximal in \(\mathrm{G}_\mathrm{E}\) or \(\mathrm{G}_\mathrm{E}\) does not have compact centre and will find a non-zero Jacquet module. (This assumption takes the place of hypothesis (H) in [29, §7.2].) Most of [29, §7.2] now goes through essentially unchanged, with two small changes in the cases called (i) and (ii) in §7.2.2 (page 350).

In case (i), the change happens when the element \(p\) cannot be chosen to normalize the representation \(\rho \), interpreted as a representation of \(\mathrm{P}^{\mathsf{{o}}}(\varLambda _{{{\mathcal{O }}_\mathrm{E}}})\) trivial on \(\mathrm{P}_1(\varLambda _{{{\mathcal{O }}_\mathrm{E}}})\). (Note that \(p\in \mathrm{P}^+(\varLambda _{{{\mathcal{O }}_\mathrm{E}}})\) so it does normalize the group \(\mathrm{P}^{\mathsf{{o}}}(\varLambda _{{{\mathcal{O }}_\mathrm{E}}})\).) In this case, \(N_\varLambda (\rho )\subseteq \mathrm{M}'\), where \(\mathrm{M}'\) is the Levi subgroup of loc. cit. (Note, however, that this would not be the case if we were working in the non-connected group \(\mathrm{G}^+\), rather than \(\mathrm{G}\).) Thus, by [29, Corollary 6.16], we have \(\mathrm{I}_\mathrm{G}(\vartheta _\mathrm{P})\subseteq \mathrm{J}_\mathrm{P}^{\mathsf{{o}}}\mathrm{M}'\mathrm{J}_\mathrm{P}^{\mathsf{{o}}}\) and, as in the proof of [29, Proposition 7.10], \((\mathrm{J}_\mathrm{P}^{\mathsf{{o}}},\vartheta _\mathrm{P})\) is a cover of \((\mathrm{J}_\mathrm{P}^{\mathsf{{o}}}\cap \mathrm{M}',\vartheta _\mathrm{P}|_{\mathrm{J}^{\mathsf{{o}}}_\mathrm{P}\cap \mathrm{M}'})\). (See also Lemma 5.8.)

In case (ii), the change happens when \(m=1\). In this case \(\mathrm{P}^{\mathsf{{o}}}(\varLambda _{{\mathcal{O }}_\mathrm{E}})\) is a maximal parahoric subgroup but \(\mathrm{G}_\mathrm{E}\) does not have compact centre; indeed \(\mathrm{G}_{\mathrm{E}_1}\simeq \mathrm{SO}(1,1)(\mathrm{F})\) and we have \(\mathrm{G}_\mathrm{E}\subseteq \mathrm{M}'\). As in case (i) above, we get that \(\mathrm{I}_\mathrm{G}(\vartheta _\mathrm{P})\subseteq \mathrm{J}_\mathrm{P}^{\mathsf{{o}}}\mathrm{M}'\mathrm{J}_\mathrm{P}^{\mathsf{{o}}}\) and \((\mathrm{J}_\mathrm{P}^{\mathsf{{o}}},\vartheta _\mathrm{P})\) is a cover of \((\mathrm{J}_\mathrm{P}^{\mathsf{{o}}}\cap \mathrm{M}',\vartheta _\mathrm{P}|_{\mathrm{J}^{\mathsf{{o}}}_\mathrm{P}\cap \mathrm{M}'})\).

In particular, in all cases, the representation \(\pi \) containing \(\vartheta \) cannot be cuspidal and we have proved the first two assertions of Proposition 4.4; the third assertion follows from [29, Lemma 7.4].

In particular, since by [28, Theorem 5.1] every irreducible cuspidal representation of \(\mathrm{G}\) does contain a semisimple character, and hence a representation of \(\mathrm{J}\) of the form \(\kappa \otimes \tau \), this also proves [29, Theorem 7.14].

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miyauchi, M., Stevens, S. Semisimple types for \(p\)-adic classical groups. Math. Ann. 358, 257–288 (2014). https://doi.org/10.1007/s00208-013-0953-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-013-0953-y

Mathematics Subject Classification (2000)

Navigation