Skip to main content
Log in

Well-posedness for the Classical Stefan Problem and the Zero Surface Tension Limit

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We develop a framework for a unified treatment of well-posedness for the Stefan problem with or without surface tension. In the absence of surface tension, we establish well-posedness in Sobolev spaces for the classical Stefan problem. We introduce a new velocity variable which extends the velocity of the moving free-boundary into the interior domain. The equation satisfied by this velocity is used for the analysis in place of the heat equation satisfied by the temperature. Solutions to the classical Stefan problem are then constructed as the limit of solutions to a carefully chosen sequence of approximations to the velocity equation, in which the moving free-boundary is regularized and the boundary condition is modified in a such a way as to preserve the basic nonlinear structure of the original problem. With our methodology, we simultaneously find the required stability condition for well-posedness and obtain new estimates for the regularity of the moving free-boundary. Finally, we prove that solutions of the Stefan problem with positive surface tension \({\sigma}\) converge to solutions of the classical Stefan problem as \({\sigma \to 0}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Almgren F., Wang L.: Mathematical existence of crystal growth with Gibbs–Thomson curvature effects. J. Geom. Anal. 10(1), 1–100 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ambrose D.M., Masmoudi N.: The zero surface tension limit of three-dimensional water waves. Indiana U. Math. J. 58, 479–522 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ambrose D.M., Masmoudi N.: The zero surface tension limit of two-dimensional water waves. Comm. Pure Appl. Math 58, 1287–1315 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  4. Athanasopoulos I., Caffarelli L. A., Salsa S.: Regularity of the free-boundary in parabolic phase-transition problems. Acta Math. 176, 245–282 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  5. Athanasopoulos I., Caffarelli L. A., Salsa S.: Phase transition problems of parabolic type: flat free-boundaries are smooth. Comm. Pure Appl. Math. 51, 77–112 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  6. Caffarelli L.A.: Some aspects of the one-phase Stefan problem. Indiana Univ. Math. J. 27, 73–77 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  7. Caffarelli L.A., Evans L.C.: Continuity of the temperature in the two-phase Stefan problem. Arch. Rational Mech. Anal. 81, 199–220 (1983)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Caffarelli, L.A., Salsa, S.: A geometric approach to free-boundary problems. American Mathematical Society, Providence, RI, 2005

  9. Cheng C.H.A., Coutand D., Shkoller S.: Global existence and decay for solutions of the Hele-Shaw flow with injection. Interfaces Free Bound. 16, 297–338 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cheng C.H.A., Granero-Belinchón R., Shkoller S.: Well-posedness of the Muskat problem with \({H^2}\) initial data, Adv. Math. 286, 32–104 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cheng, C.H.A., Shkoller, S.: Solvability and regularity for an elliptic system prescribing the curl, divergence, and partial trace of a vector field on Sobolev-class domains. http://arxiv.org/abs/1408.2469 (2014)

  12. Choi S., Kim I.: The two-phase Stefan problem: regularization near Lipschitz initial data by phase dynamics. Anal. PDE 5(5), 1063–1103 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. Choi S., Kim I.: Regularity of one-phase Stefan problem near Lipschitz initial data. Am. J. Math. 132(6), 1693–1727 (2010)

    MathSciNet  MATH  Google Scholar 

  14. Constantin P., Córdoba D., Gancedo F., Strain R. M.: On the global existence for the Muskat problem. J. Eur. Math. Soc 15(1), 201–227 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. Córdoba A., Córdoba D., Gancedo F.: Interface evolution: the Hele-Shaw and Muskat problems. Annals of Math. 173(1), 477–542 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  16. Córdoba A., Córdoba D., Gancedo F.: Porous media: the Muskat problem in 3D. Analysis & PDE, 6(2), 447–497 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  17. Coutand D., Hole J., Shkoller S.: Well-posedness of the free-boundary compressible 3-D Euler equations with surface tension and the zero surface tension limit. SIAM J. Math. Anal. 45, 3690–3767 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  18. Coutand D., Shkoller S.: On the interaction between quasilinear elastodynamics and the Navier-Stokes equations. Arch. Rational Mech. Anal. 179(3), 303–352 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Coutand D., Shkoller S.: Well-posedness of the free-surface incompressible Euler equations with or without surface tension. J. Am. Math. Soc. 20(3), 829–930 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  20. Coutand D., Shkoller S.: A simple proof of well-posedness for the free surface incompressible Euler equations. Discr. Cont. Dyn. Systems, Series S 3(3), 429–449 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  21. Coutand D., Shkoller S.: On the finite-time splash and splat singularities for the 3-D free-surface Euler equations. Commun. Math. Phys. 325, 143–183 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. De Giorgi E.: \({\Gamma}\)-convergenza e G-convergenza. Boll. Un. Mat. Ital. 5-B, 213–220 (1977)

    MathSciNet  Google Scholar 

  23. Escher J., Prüss J., Simonett G.: Analytic solutions for a Stefan problem with Gibbs–Thomson correction. J. Reine Angew. Math. 563, 1–52 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  24. Friedman A.: Variational Principles and free-boundary problems. Wiley, New York (1982)

    MATH  Google Scholar 

  25. Friedman A.: The Stefan problem for a hyperbolic heat equation. J. Math. Anal. Appl. 138, 249–279 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  26. Friedman A., Kinderlehrer D.: A one phase Stefan problem. Indiana Univ. Math. J. 25, 1005–1035 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  27. Friedman A., Reitich F.: The Stefan problem with small surface tension. Trans. Amer. Math. Soc. 328, 465–515 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  28. Frolova E. V., Solonnikov V.A.: \({L_p}\)-theory for the Stefan problem. J. Math. Sci. 99(1), 989–1006 (2000)

    Article  MathSciNet  Google Scholar 

  29. Hadžić M.: Orthogonality conditions and asymptotic stability in the Stefan problem with surface tension. Arch. Rational Mech. Anal. 203(3), 719–745 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Hadžić M., Guo Y.: Stability in the Stefan problem with surface tension (I). Commun. Partial Diff. Eqns. 35(2), 201–244 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  31. Hadžić M., Shkoller S.: Global stability and decay for the classical Stefan problem. Comm. Pure Appl. Math. 68, 689–757 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  32. Hadžić, M., Shkoller, S.: Global stability and decay for the classical Stefan problem for general boundary shapes. Philosophical Transactions of Royal Society A, 373, pp. 2050, 2015

  33. Hadžić, M., Navarro, G., Shkoller, S.: Local well-posedness and global stability of the two-phase stefan problem (Preprint)

  34. Hanzawa E.I.: Classical solution of the Stefan problem. Tohoku Math, J. 33, 297–335 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  35. Kamenomostskaya S. L.: On the Stefan problem. Mat. Sb. 53, 489–514 (1961)

    MathSciNet  MATH  Google Scholar 

  36. Kim I.: Uniqueness and existence of Hele-Shaw and Stefan problem. Arch. Rat. Mech. Anal. 168, 299–328 (2003)

    Article  MATH  Google Scholar 

  37. Kim I., Požar N.: Viscosity solutions for the two-phase Stefan problem. Comm. PDE 36(1), 42–66 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  38. Ladyženskaja, O.A., Solonnikov, V.A., Uralõceva, N.N.: Linear and quasilinear equations of parabolic type. Trans. Math. Monographs 23, Am. Math. Soc., Providence, RI (1968), Russian edition: Nauka, Moscow 1967.

  39. Luckhaus S.: Solutions for the two-phase Stefan problem with the Gibbs–Thomson law for the melting temperature. Eur. J. Appl. Math. 1, 101–111 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  40. Meirmanov, A. M.: The Stefan Problem. De Gruyter Expositions in Mathematics. 3, 1992

  41. Prüss J., Saal J., Simonett G.: Existence of analytic solutions for the classical Stefan problem. Math. Ann. 338, 703–755 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  42. Prüss J., Simonett G., Zacher R.: Qualitative behavior of solutions for thermodynamically consistent Stefan problems with surface tension. Arch. Ration. Mech. Anal. 207, 611–667 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  43. Radkevich E.V.: Gibbs-Thomson law and existence of the classical solution of the modified Stefan problem. Soviet Dokl. Acad. Sci. 316, 1311–1315 (1991)

    MathSciNet  Google Scholar 

  44. Lord Rayleigh.: On the instability of jets. Proc. London Math. Soc. 1 s1–10, 4–13, 1878

  45. Röger M.: Solutions for the Stefan problem with Gibbs–Thomson law by a local minimisation. Interfaces Free Bound. 6, 105–133 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  46. Taylor, G.: The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. I Proc. R. Soc. Lond. A 201 no. 1065, 192–196, 1950

  47. Taylor, M.E.: Partial differential equations. III. Nonlinear equations. Corrected reprint of the 1996 original. Applied Mathematical Sciences, 117, Springer-Verlag, New York, 1997

  48. Visintin, A.: Models of phase transitions. Progr. Nonlin. Diff. Equ. Appl. 28. Birkhauser, Boston, 1996

  49. Visintin, A.: Introduction to Stefan-type problems. Handbook of differential equations, evolutionary equations, 4, 377-484, Elsevier B.V., North-Holland, 2008

  50. Wu S.: Well-posedness in Sobolev spaces of the full water wave problem in 2-D. Invent. Math. 130(1), 39–72 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahir Hadžić.

Additional information

Communicated by C. Dafermos

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hadžić, M., Shkoller, S. Well-posedness for the Classical Stefan Problem and the Zero Surface Tension Limit. Arch Rational Mech Anal 223, 213–264 (2017). https://doi.org/10.1007/s00205-016-1041-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-016-1041-8

Navigation