Skip to main content
Log in

Mathematical existence of crystal growth with Gibbs-Thomson curvature effects

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

This paper introduces and studies a mathematical evolution process which models one type of growth of a crystal as it freezes from a cold melt. The crystal freezes (melts) as rapidly as it can anywhere along its interface where the temperature is below (above) the local freezing temperature so that rate of growth is governed by the rate at which latent heat of fusion can diffuse. The model incorporates general Gibbs-Thomson relations between freezing temperatures and interface surface tension and general heat capacities and conductivities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allard, W.K. On the first variation of a varifold,Ann. Math.,95, 418–491, (1972).

    Article  MathSciNet  Google Scholar 

  2. Almgren, F. Existence and regularity almost everywhere of solutions to elliptic variational problems with constraints,Mem. Am. Math. Soc,165, 199 + vii pp., (1976).

    MathSciNet  Google Scholar 

  3. Almgren, F. and Lieb, E.H. Symmetric decreasing rearrangement is sometimes continuous,J. Am. Math. Soc.,2, 683–773, (1989).

    Article  MathSciNet  MATH  Google Scholar 

  4. Almgren, F., Schoen, R., and Simon, L. Regularity and singularity estimates for hypersurfaces minimizing parametric elliptic variational integrals,Acta Math.,139, 218–265, (1977).

    MathSciNet  Google Scholar 

  5. Almgren, F., Taylor, J., and Wang, L. Curvature driven flows: A variational approach,SIAMJ. Control and Optimization,31, 387–438, (1993).

    Article  MathSciNet  MATH  Google Scholar 

  6. Almgren, R. Variational algorithms and pattern formation in dendritic solidification,J. Comp. Phys.,106, 337–354, (1993).

    MathSciNet  MATH  Google Scholar 

  7. Birkhoff, G. and Rota, G.-C.Ordinary Differential Equations, Blaisdell Pub. Co., Waltham, MA, 1969.

    MATH  Google Scholar 

  8. Bombieri, E. Regularity theory for almost minimal currents,Arch. Rational Mech. Anal,78, 99–130, (1982).

    Article  MathSciNet  MATH  Google Scholar 

  9. Cahn, J.W., Handwerker, C.A., and Taylor, J.E. Geometric models of crystal growth,Acta Metall. Matr.,40, 1443–1474, (1992).

    Article  Google Scholar 

  10. Campanato, C. Equazioni paraboliche del secondo ordine e spaziL 2,θ (Ω.δ),Annali di Matematica Pura ed Applicata,73, 55–102, (1966).

    Article  MathSciNet  MATH  Google Scholar 

  11. Federer, H.Geometric Measure Theory, Springer-Verlag, New York, 1969.

    MATH  Google Scholar 

  12. Gilbarg, D. and Trudinger, N.S.Elliptic Partial Differential Equations of Second Order, Springer-Verlag, New York, 1970.

    Google Scholar 

  13. Gurtin, M. Thermomechanics of evolving phase boundaries, preprint.

  14. Ladyzhenskaya, O.A., Solonnikov, V.A., and Ural’ceva, N.N.Linear and Quasilinear Equations of Parabolic Type, Translations of Mathematical Monographs, vol. 23,Am. Math. Soc, Providence, RI, 1968.

  15. Luckhaus, S. Solutions for the two-phase Stefan problem with the Gibbs-Thomson law for the melting temperature,Euro. J. Applied Math.,1, 101–111, (1990).

    MathSciNet  MATH  Google Scholar 

  16. Morrey, Jr., C.B.Multiple Integrals in the Calculus of Variations, Springer-Verlag, New York, 1966.

    MATH  Google Scholar 

  17. Pazy, A.Semi-groups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences,49, Springer-Verlag, New York, 1983.

    Google Scholar 

  18. Rachev, S.T. The Monge-Kantorovitch mass transference problem and its stochastic applications,Theor. Prob. Appl.,XXIX, 647–676.

  19. Roosen, A.R. Modeling crystal growth in a diffusion field with fully-facetted crystals, Ph.D. thesis, Rutgers University, New Jersey, 1993.

    Google Scholar 

  20. Rubinstein, Z.A Course in Ordinary and Partial Differential Equations, Academic Press, New York, 1969.

    MATH  Google Scholar 

  21. Stein, E.M.Singular Integrals and Differentiability Properties of Functions, Princeton Mathematical Series, Princeton University Press, Princeton, NJ, 1970.

    MATH  Google Scholar 

  22. Yosida, K.Functional Analysis, 4th ed., Springer-Verlag, New York, 1974.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

deceased

Rights and permissions

Reprints and permissions

About this article

Cite this article

Almgren, F., Wang, L. Mathematical existence of crystal growth with Gibbs-Thomson curvature effects. J Geom Anal 10, 1–100 (2000). https://doi.org/10.1007/BF02921806

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02921806

Keywords

Navigation