Skip to main content
Log in

L p -theory for the Stefan problem

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

Local solvability of the one-phase Stefan problem is established in anisotropic Sobolev spaces. There is no loss of regularity. Hanzawa transformation of the Stefan problem to a problem in a domain with a fixed boundary is modified. Bibliography: 27 titles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. M. Meirmanov, “On the classical solvability of the Stefan problem”,Dokl. Akad. Nauk SSSR,249, No. 6, 1309–1312 (1979).

    Google Scholar 

  2. A. M. Meirmanov,The Stefan Problem [in Russian], Nauka, Novosibirsk (1986).

    Google Scholar 

  3. E. I. Hanzawa, “Classical solution of the Stefan problem”,Tohoku Math. J.,33, 297–335 (1981).

    MATH  Google Scholar 

  4. B. V. Bazalii, “Investigation of a two-phase Stefan problem in a neighborhood of a stationary solution”,Dokl. Akad. Nauk Ukr. SSR, Ser. A, No. 12, 3–7 (1983).

    Google Scholar 

  5. B. V. Bazalii, “The Stefan problem”,Dokl. Akad. Nauk Ukr. SSR, Ser. A, No. 11, 3–7 (1986).

    Google Scholar 

  6. B. V. Bazalii and S. P. Degtyarev, “Classical solvability of the multidimensional Stefan problem under convective movement of a viscous incompressible fluid”,Mat. Sb.,132, No. 1, 3–19 (1987).

    Google Scholar 

  7. E. V. Radkevich, “On the solvability of nonstationary free boundary problems”,Dokl. Akad. Nauk SSSR,288, No. 5, 1094–1099 (1986).

    Google Scholar 

  8. E. V. Radkevich and A. S. Melikulov,boundary-Value Problems with Free Boundary [in Russian], FAN, Tashkent (1988).

    MATH  Google Scholar 

  9. E. V. Radkevich, “On the solvability of general nonstationary free boundary problems”, in:Some Applications of Factorial Analysis to the Problems of Mathematical Physics [in Russian], Novosibirsk (1986) pp. 85–111.

  10. G. I. Bizhanova, “Investigation of the solvability of the multidimensional two-phase Stefan problems and the Florin problem on nonstationary filtration for second-order parabolic equations in a weighted Hölder function space (Cauchy-Stefan and Cauchy-Florin problems)”,Zap. Nauchn Semin. POMI,213, 14–47 (1994).

    Google Scholar 

  11. G. I. Bizhanova, “Solution in a weighted Hölder function space of the multidimensional two-phase Stefan and Florin problems for a second-order parabolic equation in a bounded domain”,Algebra Analiz,7, No. 2, 46–76 (1995).

    MATH  Google Scholar 

  12. A. Friedman and D. Kinderlehrer, “A one phase Stefan problem”,Indiana, Univ. Math. J.,24, 1005–1035 (1975).

    Article  MATH  Google Scholar 

  13. L. A. Caffarelly, “Some aspects of the one-phase Stefan problem”,Indiana Univ. Math. J.,27, 73–77 (1978).

    Article  Google Scholar 

  14. D. Kinderlehrer and L. Nirenberg, “The smoothness of the free boundary in the one phase Stefan problem”,Commun. Pure Appl. Math.,31, 257–282 (1978).

    Article  MATH  Google Scholar 

  15. J. Escher, “On moving boundaries in deformable media”,Adv. Math. Sci. Appl., (1997) (to appear).

  16. O. A. Ladyzhenskaya, V. A. Solonnikov, and N. N. Ulal’tseva,Linear and Quasilinear Equations of Parabolic Type [in Russian], Moscow (1967).

  17. G. I. Bizhanova and V. A. Solonnikov, “On the solvability of the initial-boundary value problem with time derivative in the boundary condition for a second-order parabolic equation in a weighted Hölder function space”,Algebra Analiz,5, No. 1, 109–142 (1993).

    MATH  Google Scholar 

  18. N. A. Grigorieva and I. Sh. Mogilevskii, “On a boundary-value problem for the heat equation”,Geom. Ques. Funct. Theory, 27–42 (1985).

  19. E. V. Frolova, “An initial-boundary-value problem with a noncoercive boundary condition in domains with edges,”Zap. Nauchn. Semin. POMI,213, 206–223 (1994).

    Google Scholar 

  20. E. V. Frolova, “L p -estimates for solutions of model problems with time derivative in the boundary condition or in the conjugation condition,,”Izv. St. Petersburg Electrotechnical Univ,450, 69–79 (1996).

    Google Scholar 

  21. H. Koch, “Classical solutions to phase transition problems are smooth”, Preprint SFB 359, Univ. of Heidelberg (1996), pp. 96–46.

  22. S. I. Temirbulatov, “Incorrect mixed problems of heat conduction,,”Dokl. Akad. Nauk SSSR,246, No. 1 45–47 (1982).

    Google Scholar 

  23. V. A. Solonnikov, “OnL p -estimates for solutions of elliptic and parabolic systems,”Tr. Mat. Inst. Stekhov,70, 1334–213 (1964).

    Google Scholar 

  24. V. P. Il'in, and V. A. Solonnikov, “On some properties of multivariable differentiable functions,”Tr. Mat. Inst. Steklov.,66, 205–226 (1962).

    MATH  Google Scholar 

  25. O. A. Oleinik, “On a method of solution of the general Stefan problem,”Dokl. Akad. Nauk SSSR,135, No. 5, 1054–1057 (1960).

    Google Scholar 

  26. S. L. Kamenomostskaya, “On the Stefan problem,”Mat. Sb.,53, No. 4 489–514 (1961).

    Google Scholar 

Download references

Authors

Additional information

Dedicated to the memory of A. P. Oskolkov

Translated fromZapiski Nauchnykh Seminarov POMI, Vol. 243, 1997, pp. 299–323.

Translated by E. V. Frolova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Solonnikov, V.A., Frolova, E.V. L p -theory for the Stefan problem. J Math Sci 99, 989–1006 (2000). https://doi.org/10.1007/BF02673603

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02673603

Keywords

Navigation