Skip to main content
Log in

Monotone Sobolev Mappings of Planar Domains and Surfaces

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

An approximation theorem of Youngs (Duke Math J 15, 87–94, 1948) asserts that a continuous map between compact oriented topological 2-manifolds (surfaces) is monotone if and only if it is a uniform limit of homeomorphisms. Analogous approximation of Sobolev mappings is at the very heart of Geometric Function Theory (GFT) and Nonlinear Elasticity (NE). In both theories the mappings in question arise naturally as weak limits of energy-minimizing sequences of homeomorphisms. As a result of this, the energy-minimal mappings turn out to be monotone. In the present paper we show that, conversely, monotone mappings in the Sobolev space \({\,{\fancyscript{W}}^{1,p}\,, \,1 < p < \infty\,}\), are none other than \({\,{\fancyscript{W}}^{1,p}\,}\)-weak (also strong) limits of homeomorphisms. In fact, these are limits of diffeomorphisms. By way of illustration, we establish the existence of traction free energy-minimal deformations for  p -harmonic type energy integrals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alessandrini G., Sigalotti M.: Geometric properties of solutions to the anisotropic p-Laplace equation in dimension two. Ann. Acad. Sci. Fenn. Math. 26(1), 249–266 (2001)

    MATH  MathSciNet  Google Scholar 

  2. Antman, S.S.: Nonlinear problems of elasticity. Applied Mathematical Sciences, 107. Springer, New York, 1995

  3. Astala K., Iwaniec T., Martin G.: Deformations of annuli with smallest mean distortion. Arch. Ration. Mech. Anal. 195(3), 899–921 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  4. Astala, K., Iwaniec, T., Martin, G.: Elliptic partial differential equations and quasiconformal mappings in the plane. Princeton University Press, Princeton, NJ, 2009

  5. Ball, J.M.: Convexity conditions and existence theorems in nonlinear elasticity. Arch. Rational Mech. Anal. 63(4), 337–403 (1976/77)

  6. Ball, J.M.: Constitutive inequalities and existence theorems in nonlinear elastostatics, Nonlinear analysis and mechanics: Heriot-Watt Symposium (Edinburgh, 1976), vol. I, pp. 18717241. Res. Notes in Math., No. 17, Pitman, London, (1977)

  7. Ball, J.M.: Existence of solutions in finite elasticity. In: Proceedings of the IUTAM Symposium on Finite Elasticity. Martinus Nijhoff, 1981

  8. Ball J.M.: Discontinuous equilibrium solutions and cavitation in nonlinear elasticity. Philos. Trans. R. Soc. Lond. A 306, 557–611 (1982)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  9. Ball, J.M.: Minimizers and the Euler–Lagrange equations, Trends and applications of pure mathematics to mechanics (Palaiseau, 1983), 1–4, Lecture Notes in Phys., 195, Springer, Berlin, 1984

  10. Bethuel, F.: The approximation problem for Sobolev maps between two manifolds. Acta Math. 167, 153–206 (1991)

  11. Ciarlet, P.G.: Mathematical elasticity vol. I. Three-dimensional elasticity, Studies in Mathematics and its Applications, 20. North-Holland Publishing Co., Amsterdam, 1988

  12. Clarkson, J.A.: Uniformly convex spaces. Trans. Am. Math. Soc. 40, 396–414 (1936)

  13. Day M.M.: Some More Uniformly Convex Spaces. Bull. Am. Math. Soc. 47(6), 504–507 (1941)

    Article  MathSciNet  MATH  Google Scholar 

  14. Duren, P.: Harmonic mappings in the plane, Cambridge Tracts in Mathematics, 156. Cambridge University Press, Cambridge, 2004

  15. Hajasz, P.: Sobolev mappings: Lipschitz density is not a bi-Lipschitz invariant of the target. Geom. Funct. Anal. 17(2), 435–467 (2007)

  16. Hajasz, P., Iwaniec, T., Malý J. , Onninen, J.: Weakly differentiable mappings between manifolds. Mem. Am. Math. Soc. 192(899) (2008)

  17. Hang, F., Lin, F.: Topology of Sobolev mappings. Math. Res. Lett. 8, 321–330 (2001)

  18. Hang, F., Lin, F.: Topology of Sobolev mappings II. Acta Math. 191, 55-107 (2003)

  19. Heinonen, J., Kilpeläinen, T., Martio, O.: Nonlinear potential theory of degenerate elliptic equations, Oxford University Press, New York, 1993

  20. Iwaniec, T., Koh, N.-T., Kovalev, L.V., Onninen, J.: Existence of energy-minimal diffeomorphisms between doubly connected domains. Invent. Math. 186(3), 667–707 (2011)

  21. Iwaniec, T., Koski, A., Onninen, J.: Isotropic p-harmonic systems in 2D, Jacobian estimates and univalent solutions. Rev. Mat. Iberoam. (to appear)

  22. Iwaniec, T., Kovalev, L.V., Onninen, J.: Hopf differentials and smoothing Sobolev homeomorphisms. Int. Math. Res. Not. IMRN, 2012(14), 3256–3277 (2012)

  23. Iwaniec, T., Kovalev, L.V., Onninen, J.: Approximation up to the boundary of homeomorphisms of finite Dirichlet energy. Bull. Lond. Math. Soc., 44(5), 871–881 (2012)

  24. Iwaniec T., Kovalev L.V., Onninen J.: Diffeomorphic approximation of Sobolev homeomorphisms. Arch. Rat. Mech. Anal., 201(3), 1047–1067 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  25. Iwaniec, T., Kovalev, L.V., Onninen, J.: Lipschitz regularity for inner-variational equations. Duke Math. J. 162(4), 643–672 (2013)

  26. Iwaniec, T., Manfredi, J.J.: Regularity of p-harmonic functions on the plane. Rev. Mat. Iberoam. 5(1–2), 1–19 (1989)

  27. Iwaniec, T., Martin, G.: Geometric Function Theory and Non-linear Analysis, Oxford Mathematical Monographs, Oxford University Press, 2001

  28. Iwaniec T., Onninen J.: Deformations of finite conformal energy: Boundary behavior and limit theorems. Trans. Am. Math. Soc. 363(11), 5605–5648 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  29. Iwaniec, T., Onninen, J.: n-Harmonic mappings between annuli. Mem. Am. Math. Soc. 218 (2012)

  30. Iwaniec, T., Onninen, J.: Mappings of least Dirichlet energy and their Hopf differentials. Arch. Ration. Mech. Anal. 209(2), 401–453 (2013)

  31. Iwaniec, T., Onninen, J.: Limits of Sobolev homeomorphisms. J. Eur. Math. Soc. (JEMS), (to appear)

  32. Iwaniec, T., Šverák, V.: On mappings with integrable dilatation. Proc. Am. Math. Soc. 118(1), 181–188 (1993)

  33. Koebe, P.: Über die Uniformisierung reeller algebraischer Kurven, Göttinger Nachrichten, 177–190 (1907)

  34. Koebe, P.: Über die Uniformisierung beliebiger analytischer Kurven, Göttinger Nachrichten, 191–210 (1907)

  35. Koebe, P.: Über die Uniformisierung beliebiger analytischer Kurven, (2),Göttinger Nachrichten, 633–669 (1907)

  36. Kuiper, N.H.: C 1-isometric imbeddings. I, II. Nederl. Akad. Wetensch. Proc. Ser. A. 58, 545–556 (1955)

  37. Lebesgue H.: Sur le probléme de Dirichlet. Rend. Circ. Palermo 27, 371–402 (1907)

    Article  MATH  Google Scholar 

  38. Malý, J., Ziemer, W.P.: Fine regularity of solutions of elliptic partial differential equations, Mathematical Surveys and Monographs, 51. American Mathematical Society, Providence, RI, 1997

  39. Marsden, J.E., Hughes, T.J.R.: Mathematical foundations of elasticity, Dover Publications, Inc., New York, 1994

  40. McAuley, L.F.: Some fundamental theorems and problems related to monotone mappings. In: Proceedings of First Conference on Monotone Mappings and Open Mappings (SUNY at Binghamton, Binghamton, N.Y., 1970). pp. 1–36. State Univ. of New York at Binghamton, N.Y., 1971

  41. Moise, E.E.: Geometric topology in dimensions 2 and 3, Graduate Texts in Mathematics 47. Springer. New York-Heidelberg, 1977

  42. Morrey C.B.: The Topology of (Path) Surfaces. Am. J. Math. 57(1), 17–50 (1935)

    Article  MathSciNet  MATH  Google Scholar 

  43. Nash, J.: C 1 isometric imbeddings. Ann. Math. (2) 60, 383–396 (1954)

  44. Poincaré, H.: Sur l’uniformisation des fonctions analytiques. Acta Math. 31(1), 1–63 (1908)

  45. Radó, T.: Über den Begriff Riemannschen Fläche. Szeged Univ. Act. 2, 101–121 (1925)

  46. Radó, T. Length and Area, American Mathematical Society, New York, 1948

  47. Šilhavý, M.: The mechanics and thermodynamics of continuous media, Texts and Monographs in Physics. Springer, Berlin, 1997

  48. Truesdell, C., Noll, W.: The non-linear field theories of mechanics, Edited and with a preface by Stuart S. Antman. Springer, Berlin, 2004

  49. Uhlenbeck, K.: Regularity for a class of non-linear elliptic systems. Acta Math. 1383–4, 219–240 (1977)

  50. Uraltseva, N.N.: Degenerate quasilinear elliptic systems, (Russian) Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 7, pp. 184–222, 1968

  51. Youngs J.W.T.: Homeomorphic approximations to monotone mappings. Duke Math. J. 15, 87–94 (1948)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jani Onninen.

Additional information

Communicated by V. Šverák

T. Iwaniec was supported by the NSF grant DMS-1301558 and the Academy of Finland project 1128331. J. Onninen was supported by the NSF grant DMS-1301570.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iwaniec, T., Onninen, J. Monotone Sobolev Mappings of Planar Domains and Surfaces. Arch Rational Mech Anal 219, 159–181 (2016). https://doi.org/10.1007/s00205-015-0894-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-015-0894-6

Keywords

Navigation