Skip to main content
Log in

Radó–Kneser–Choquet theorem for harmonic mappings between surfaces

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

We simplify and improve a recent result of Martin (Trans AMS 368:647–658, 2016). Then we prove that if f is an orientation preserving harmonic mapping of the unit disk onto a \(C^{3,\alpha }\) surface \(\Sigma \) bounded by a Jordan curve \(\gamma \in C^{3,\alpha }\), that belongs to the boundary of a convex domain in \(\mathbf {R}^3\), then f is a diffeomorphism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alessandrini, G., Nesi, V.: Invertible harmonic mappings, beyond Kneser. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 8(3), 451–468 (2009)

    MathSciNet  MATH  Google Scholar 

  2. Alessandrini, G., Nesi, V.: Univalent \(\sigma \)-harmonic mappings. Arch. Ration. Mech. Anal. 158(2), 155–171 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bernstein, S.: Sur la généralisation du problém de Dirichlet. Math. Ann. 69, 82–136 (1910)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chen, X., Qian, T.: Estimation of hyperbolically partial derivatives of \(\rho \)-harmonic quasiconformal mappings and its applications. Complex Var. Elliptic Equ. 60(6), 875–892 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ekholm, T., White, B., Wienholtz, D.: Embeddedness of minimal surfaces with total boundary curvature at most \(4\pi \). Ann. of Math. (2) 155(1), 209–234 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  6. Heinz, E.: On certain nonlinear elliptic differential equations and univalent mappings. J. Anal. Math. 5, 197–272 (1956/1957)

  7. Heinz, E.: Über das Nichtverschwinden der Funktionaldeterminante bei einer Klasse eineindeutiger Abbildungen. Math. Z. 105, 87–89 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  8. Choi, H., Treibergs, A.: Gauss maps of spacelike constant mean curvature hypersurfaces of Minkowski space. J. Differen. Geom. 32(3), 775–817 (1990)

    MathSciNet  MATH  Google Scholar 

  9. Dierkes, U., Hildebrandt, S., Sauvigny, F.: Minimal surfaces. Revised and enlarged 2nd edition, vol. 339, pp. xvi+688. Springer, Heidelberg (2010)

  10. Duren, P., Khavinson, D.: Boundary correspondence and dilatation of harmonic mappings. Complex Var. Theory Appl. 33(1–4), 105–111 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  11. Globevnik, J., Stout, E.L.: Analytic discs with rectifiable simple closed curves as ends. Ann. of Math. (2) 127(2), 389–401 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  12. Jost, J.: Univalency of harmonic mappings between surfaces. J. Reine Angew. Math. 324, 141–153 (1981)

    MathSciNet  MATH  Google Scholar 

  13. Jost, J.: Riemannian geometry and geometric analysis, 6th ed. (English) Universitext. Springer, Berlin (ISBN 978-3-642-21297-0/pbk; 978-3-642-21298-7/ebook). xiii, p. 611

  14. Jost, J.: Harmonic maps between surfaces. Notes in mathematics, vol. 1062. Springer-Verlag, Berlin (1984)

    MATH  Google Scholar 

  15. Kalaj, D.: Heinz–Schwarz inequalities for harmonic mappings in the unit ball. Ann. Acad. Sci. Fenn. Math. 41, 457–464 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kalaj, D.: On harmonic diffeomorphisms of the unit disc onto a convex domain. Complex Var. Theory Appl. 48, 175–187 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kalaj, D.: Quasiconformal harmonic functions between convex domains. Publ. Inst. Math. (Beograd) (N.S.) 76(90), 3–20 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kalaj, D.: Energy-minimal diffeomorphisms between doubly connected Riemann surfaces. Calc. Var. PDE. doi:10.1007/s00526-013-0683-8

  19. Kalaj, D.: Quasiconformal harmonic mappings between \(C^{1,\mu }\) Euclidean surfaces. Monatsh. Math. 167, 205–229 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kalaj, D., Mateljević, M.: On quasiconformal harmonic surfaces with rectifiable boundary. Complex Anal. Oper. Theory 5, 633–646 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. Laugesen, R.S.: Planar harmonic maps with inner and Blaschke dilatations. J. Lond. Math. Soc. II Ser. 56, 37–48 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  22. Lehto, O., Virtanen, K.I.: Quasiconformal mappings in the plane, 2nd ed. Translated from the German by K. W. Lucas. Die Grundlehren der mathematischen Wissenschaften, Band 126. Springer-Verlag, New York-Heidelberg, pp. viii+258 (1973)

  23. Martin, G.: Harmonic degree 1 maps are diffeomorphisms: Lewy’s theorem for curved metrics. Trans. Am. Math. Soc. 368, 647–658 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  24. Nitsche, J.C.C.: Lectures on minimal surfaces, vol. 1. Introduction, fundamentals, geometry and basic boundary value problems. Translated from the German by Jerry M. Feinberg. With a German foreword. Cambridge University Press, Cambridge, pp. xxvi+563 (1989)

  25. Partyka, D., Sakan, K.-I.: Heinz type inequalities for Poisson integrals. Comput. Methods Funct. Theory 14(2–3), 219–236 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  26. Partyka, D., Zajac, J.: The Schwarz type inequality for harmonic mappings of the unit disc with boundary normalization. Complex Anal. Oper. Theory 9, 213–228 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  27. Pommerenke, Ch.: On analytic functions with cluster sets of finite linear measure. Mich. Math. J. 34, 93–99 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  28. Schulz, F.: Univalent solutions of elliptic systems of Heinz-Lewy type. Ann. Inst. H. Poincaré Anal. Non Linéaire 6, 347–361 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  29. Schoen, R. Yau, S.T.: Lectures on harmonic maps. In: Conference Proceedings and Lecture Notes in Geometry and Topology, II. International Press, Cambridge, MA, pp. vi+394 (1997)

  30. Schoen, R., Yau, S.T.: On univalent harmonic maps between surfaces. Invent. Math. 44, 265–278 (1978)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Kalaj.

Additional information

Communicated by J. Jost.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalaj, D. Radó–Kneser–Choquet theorem for harmonic mappings between surfaces. Calc. Var. 56, 4 (2017). https://doi.org/10.1007/s00526-016-1098-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-016-1098-0

Mathematics Subject Classification

Navigation