Skip to main content
Log in

Sulfhydryl-mediated redox signaling in inflammation: role in neurodegenerative diseases

  • Review Article
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Posttranslational modifications of cysteine sulfhydryl (–SH) moieties, e.g., S-nitrosylation, S-glutathionylation, or S-sulfuration, play an important role in cellular response to oxidative stress. Reversible cysteine modifications alter protein function and can play a critical role in redox signal transduction. Perturbation of sulfhydryl homeostasis is a hallmark of many diseases, including neurodegenerative disorders. Besides direct oxidative stress within the neurons, inflammation of the central nervous system as well as the periphery is implicated also in the development and progression of neurodegeneration. Therefore, perturbation of redox regulation of key inflammatory mediators is an important component of neurodegenerative diseases. Many proteins involved in inflammation have been shown to undergo S-nitrosylation (–SNO) and/or S-glutathionylation (–SSG) with functional consequences. The mechanistic and functional relationships between these two modifications have yet to be thoroughly investigated. While protein–SNO intermediates in some cases may signal independently of protein–SSG intermediates, the relatively unstable nature of protein–SNO derivatives in the presence of GSH suggests that protein–SNO formation in many cases may serve as a precursor for protein–SSG modifications. In this review, we describe the cysteine modifications of specific inflammation-mediating proteins and their relationship to inflammatory responses such as cytokine and chemokine production. In particular, we consider evidence for sequential protein–SNO → protein–SSG modifications of these proteins. We conclude that cysteine modifications of critical regulatory proteins are likely to play a central role in the onset and progression of neuroinflammatory diseases and thus should be studied thoroughly in this context.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ACT:

α1-Antichymotrypsin

AD:

Alzheimer’s disease

Akt/PKB:

Protein kinase B

ALS:

Amyotrophic lateral sclerosis

APP:

Amyloid precursor protein

Aβ:

Amyloid-beta

BioGEE:

Biotinylated glutathione ethyl ester

Biotin-HPDP:

N-[(6-biotinamido)hexyl]-3′-(2′-pyridyldithio) propionamide

BMDM:

Bone marrow derived macrophages

CD4:

Cluster of differentiation 4

CNS:

Central nervous system

COX2:

Cyclooxygenase 2

CSE:

Cystathionine γ-lyase

CSF:

Cerebrospinal fluid

CXCR3/4:

Chemokine receptor 3/4

Cys-SNO:

S-nitrosocysteine

DAMPs:

Damage-associated molecular patterns

DTT:

Dithiothreitol

EAE:

Experimental autoimmune encephalomyelitis

eNOS:

Endothelial nitric oxide synthase

ERK1/2:

Extracellular-signal-regulated kinase 1/2

GCL:

Glutamate cysteine ligase

GGCS:

Gamma-glutamylcysteine synthetase

Grx:

Glutaredoxin

Grx1:

Glutaredoxin-1

GS· :

Glutathione radical

GSH:

Glutathione

GSNO:

S-Nitrosoglutathione

GSSG:

Glutathione disulfide

GST:

Glutathione-S-transferase

GSTπ:

Glutathione S-transferase pi

H2S:

Hydrogen sulfide

HD:

Huntington’s disease

HMGB1:

High-mobility group protein B1

HO-1:

Heme oxygenase 1

IAM:

Iodoacetamide

Iba:

Ionized calcium-binding adaptor molecule 1

ICE:

Interleukin-1 converting enzyme

IKKα:

Inhibitor of nuclear factor kappa B kinase subunit alpha

IKKβ:

Inhibitor of nuclear factor kappa B kinase subunit beta

IL-1R:

Interleukin 1 receptor

IL-1β:

Interleukin 1 beta

IL-6:

Interleukin 6

INFγ:

Interferon gamma

iNOS:

Inducible nitric oxide synthase

IRAK:

Interleukin-1 receptor-associated kinase

IRF3:

Interferon regulatory factor 3

IκBα:

Inhibitory kappa B alpha

IκBα:

Nuclear factor of kappa-light polypeptide gene enhancer in B cells inhibitor, alpha

JNK:

c-Jun N-terminal kinase

LPS:

Lipopolysaccharide

LRRK2:

Leucine-rich repeat kinase 2

LTβR:

Lymphotoxin-beta receptor

MMTS:

S-Methyl methanethiosulfonate

MND:

Motor neuron disease

MPTP:

1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine

MS:

Multiple sclerosis

MyD88:

Myeloid differentiation primary response gene (88)

NADP+/H:

Nicotinamide adenine dinucleotide phosphate (oxidized/reduced)

NFκB:

Nuclear factor kappa-light-chain-enhancer of activated B cells

NFκB2/p100:

Nuclear factor NF-kappa B p100 subunit

NLRP3:

NACHT, LRR and PYD domains-containing protein 3

nNOS:

Neuronal nitric oxide synthase

NO:

Nitric oxide

NSAID:

Non-steroid anti-inflammatory drug

PAMPs:

Pathogen-associated molecular patterns

PD:

Parkinson’s disease

PKB:

Protein kinase B

PPARγ:

Peroxisome proliferator-activated receptor gamma

Pro-SH:

Reduced protein thiol

Pro-SNO:

S-nitrosylated protein

Pro-SO2H:

Protein sulfinic acid

Pro-SO3H:

Protein sulfonic acid

Pro-SOH:

Protein sulfenic acid

Pro-SSG:

Glutathionylated protein

Pro-SSH:

Sulfhydrated protein

PS1:

Presenilin-1

PTEN:

Phosphatase and tensin analog deleted from chromosome 10

Rac1:

Ras-related C3 botulinum toxin substrate 1

RING:

Really interesting new gene

ROS:

Reactive oxygen species

RTK:

Receptor tyrosine kinase

S100:

Soluble in 100 % ammonium sulfate at neutral pH

S100A8:

S100 calcium-binding protein A8

S100A9:

S100 calcium-binding protein A9

SNAP:

S-nitroso-N-acetylpenicillamine

SOD:

Superoxide dismutase

solTNF-α:

Soluble TNF-α

STAT3:

Signal transducer and activator of transcription 3

TAB:

TAK1-binding protein

TAK1:

TGF (transforming growth factor) beta-activated kinase 1

TLR:

Toll-like receptor

tmTNF-α:

Transmembrane TNF-α

TNF-α:

Tumor necrosis factor alpha

TNFR:

Tumor necrosis factor receptor

TR:

Thioredoxin reductase

TRAF6:

Tumor necrosis factor receptor-associated factor 6

Trx:

Thioredoxin

References

  • Adachi T et al (2004) S-glutathiolation by peroxynitrite activates SERCA during arterial relaxation by nitric oxide. Nat Med 10(11):1200–1207

    Article  CAS  PubMed  Google Scholar 

  • Aesif SW, Janssen-Heininger YMW, Reynaert NL (2010) Protocols for the detection of s-glutathionylated and s-nitrosylated proteins in situ, 1st edn. Elsevier, Amsterdam

    Google Scholar 

  • Aesif SW et al (2011) Ablation of glutaredoxin-1 attenuates lipopolysaccharide-induced lung inflammation and alveolar macrophage activation. Am J Respir Cell Mol Biol 44(4):491–499

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Anand A, Thakur K, Gupta PK (2013) ALS and oxidative stress: the neurovascular scenario. Oxid Med Cell Longev 2013:635831. doi:10.1155/2013/635831

    PubMed Central  PubMed  Google Scholar 

  • Anneser J et al (2004) Glial proliferation and metabotropic glutamate receptor expression in amyotrophic lateral sclerosis. J Neuropathol Exp Neurol 63(8):831–840

    Article  CAS  PubMed  Google Scholar 

  • Aoyama K, Nakaki T (2013) Impaired glutathione synthesis in neurodegeneration. Int J Mol Sci 14(10):21021–21044

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Appel SH et al (2011) The microglial-motoneuron dialogue in ALS. Acta myologica: myopathies and cardiomyopathies: official journal of the Mediterranean Society of Myology/edited by the Gaetano Conte Academy for the study of striated muscle diseases 30(1):4–8

    CAS  Google Scholar 

  • Akira S, Takeda K (2004) Toll-like receptor signalling. Nat Rev Immunol 4(7):499–511

    Article  CAS  PubMed  Google Scholar 

  • Bansal G et al (2013) IL-22 activates oxidant signaling in pulmonary vascular smooth muscle cells. Cell Signal 25(12):2727–2733

    Article  CAS  PubMed  Google Scholar 

  • Bonizzi G, Karin M (2004) The two NF-kappaB activation pathways and their role in innate and adaptive immunity. Trends Immunol 25(6):280–288

    Article  CAS  PubMed  Google Scholar 

  • Bradford J et al (2010) Mutant huntingtin in glial cells exacerbates neurological symptoms of Huntington disease mice. J Biol Chem 285(14):10653–10661

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Breidert T et al (2002) Protective action of the peroxisome proliferator-activated receptor-γ agonist pioglitazone in a mouse model of Parkinson’s disease. J Neurochem 82(3):615–624. doi:10.1046/j.1471-4159.2002.00990.x

    Article  CAS  PubMed  Google Scholar 

  • Brooks BR (2009) Managing amyotrophic lateral sclerosis: slowing disease progression and improving patient quality of life. Ann Neurol 65(Suppl 1):S17–S23

    Article  CAS  PubMed  Google Scholar 

  • Browne SE, Beal MF (2006) Oxidative damage in Huntington’s disease pathogenesis. Antioxid Redox Signal 8(11–12):2061–2073

    Article  CAS  PubMed  Google Scholar 

  • Butterfield DA, Swomley AM, Sultana R (2013) Amyloid β-peptide (1-42)-induced oxidative stress in Alzheimer disease: importance in disease pathogenesis and progression. Antioxid Redox Signal 19(8):823–835

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Butturini E et al (2013) Mild oxidative stress induces S-glutathionylation of STAT3 and enhances chemosensitivity of tumoural cells to chemotherapeutic drugs. Free Radic Biol Med 65:1322–1330

    Article  CAS  PubMed  Google Scholar 

  • Butturini E et al (2014) S-glutathionylation at Cys328 and Cys542 impairs STAT3 phosphorylation. ACS Chem Biol 9(8):1885–1893

    Article  CAS  PubMed  Google Scholar 

  • Carvalho AN et al (2014) Glutathione in multiple sclerosis: more than just an antioxidant? Mult Scler (Houndmills, Basingstoke, England) 20(11):1425–1431

    Article  CAS  Google Scholar 

  • Casoli T et al (2010) Peripheral inflammatory biomarkers of Alzheimer’s disease: the role of platelets. Biogerontology 11(5):627–633

    Article  CAS  PubMed  Google Scholar 

  • Chantzoura E et al (2010) Glutaredoxin-1 regulates TRAF6 activation and the IL-1 receptor/TLR4 signalling. Biochem Biophys Res Commun 403(3–4):335–339

    Article  CAS  PubMed  Google Scholar 

  • Chung S et al (2010) Glutaredoxin 1 regulates cigarette smoke-mediated lung inflammation through differential modulation of IκB kinases in mice: impact on histone acetylation. Am J Physiol Lung Cell Mol Physiol 299(2):L192–L203

    Article  CAS  Google Scholar 

  • Chung J-Y et al (2013) Elevated TRAF2/6 expression in Parkinson’s disease is caused by the loss of Parkin E3 ligase activity. Lab Investig 93(6):663–676

    Article  CAS  PubMed  Google Scholar 

  • Collins LM et al (2012) Contributions of central and systemic inflammation to the pathophysiology of Parkinson’s disease. Neuropharmacology 62(7):2154–2168

    Article  CAS  PubMed  Google Scholar 

  • Conrad M et al (2013) Glutathione and thioredoxin dependent systems in neurodegenerative disease : What can be learned from reverse genetics in mice. Neurochem Int 62:738–749

    Article  CAS  PubMed  Google Scholar 

  • Cruz CM et al (2007) ATP activates a reactive oxygen species-dependent oxidative stress response and secretion of proinflammatory cytokines in macrophages. J Biol Chem 282(5):2871–2879

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cudkowicz ME et al (2006) Trial of celecoxib in amyotrophic lateral sclerosis. Ann Neurol 60(1):22–31

    Article  CAS  PubMed  Google Scholar 

  • Czirr E, Wyss-Coray T (2012) The immunology of neurodegeneration. J Clin Invest 122(4):1156–1163

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • D’Ambrosi N et al (2014) Rac1 at the crossroad of actin dynamics and neuroinflammation in Amyotrophic Lateral Sclerosis. Front Cell Neurosci 8:279

    PubMed Central  PubMed  Google Scholar 

  • Dalle-Donne I et al (2002) Reversible S-glutathionylation of Cys374 regulates actin filament formation by inducing structural changes in the actin molecule. Free Radic Biol Med 34(1):23–32

    Article  Google Scholar 

  • Deleidi M, Gasser T (2013) The role of inflammation in sporadic and familial Parkinson’s disease. Cell Mol Life Sci CMLS 70(22):4259–4273

    Article  CAS  PubMed  Google Scholar 

  • Derudder E et al (2003) RelB/p50 dimers are differentially regulated by tumor necrosis factor-alpha and lymphotoxin-beta receptor activation: critical roles for p100. J Biol Chem 278(26):23278–23284

    Article  CAS  PubMed  Google Scholar 

  • Diamant G, Dikstein R (2013) Transcriptional control by NF-κB: elongation in focus. Biochim et biophys Acta 1829:937–945

    Article  CAS  Google Scholar 

  • Díaz-amarilla P et al (2011) Phenotypically aberrant astrocytes that promote motoneuron damage in a model of inherited amyotrophic lateral sclerosis. Proc Natl Acad Sci U S A 108(44):18126–18131

    Article  PubMed Central  PubMed  Google Scholar 

  • Dimmeler BS et al (1997) suppression of apoptosis by nitric oxide via inhibition of interleukin-1b–converting enzyme (ICE)-like and cysteine protease protein (CPP)-32—like proteases. J Exp Med 185(4):601–607

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Doens D, Fernández PL (2014) Microglia receptors and their implications in the response to amyloid β for Alzheimer’s disease pathogenesis. J Neuroinflammation 11:48

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Dzamko N et al (2012) The IkappaB kinase family phosphorylates the Parkinson’s disease kinase LRRK2 at Ser935 and Ser910 during toll-like receptor signaling. PloS One 7(6):e39132

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Edgeworth J et al (1991) Identification of p8, 14 as a highly abundant heterodimeric calcium binding protein complex of myeloid cells. J Biol Chem 266(12):7706–7713

    CAS  PubMed  Google Scholar 

  • Elliott JM et al (2009) Crystal structure of procaspase-1 zymogen domain reveals insight into inflammatory caspase autoactivation. J Biol Chem 284(10):6546–6553

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Estelle R, Parain K, Chantal J (2002) Role of TNF-α receptors in mice intoxicated with the parkinsonian toxin MPTP. Exp Neurol 192:183–192

    Google Scholar 

  • Evans MC et al (2013) Inflammation and neurovascular changes in amyotrophic lateral sclerosis. Mol Cell Neurosci 53:34–41

    Article  CAS  PubMed  Google Scholar 

  • Ferger B et al (2004) Genetic ablation of tumor necrosis factor-alpha (TNF-alpha) and pharmacological inhibition of TNF-synthesis attenuates MPTP toxicity in mouse striatum. J Neurochem 89(4):822–833

    Article  CAS  PubMed  Google Scholar 

  • Fiaschi T et al (2006) Redox regulation of beta-actin during integrin-mediated cell adhesion. J Biol Chem 281(32):22983–22991

    Article  CAS  PubMed  Google Scholar 

  • Findlay VJ et al (2006) A novel role for human sulfiredoxin in the reversal of glutathionylation. Cancer Res 66(13):6800–6806

    Article  CAS  PubMed  Google Scholar 

  • Finn NA, Kemp ML (2012) Pro-oxidant and antioxidant effects of N-acetylcysteine regulate doxorubicin-induced NF-kappa B activity in leukemic cells. Mol Biosys 8(2):650–662

    Article  CAS  Google Scholar 

  • Foster MW, Hess DT, Stamler JS (2009) Protein S-nitrosylation in health and disease: a current perspective. Trends Mol Med 15(9):391–404

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gallogly MM, Mieyal JJ (2007) Mechanisms of reversible protein glutathionylation in redox signaling and oxidative stress. Curr Opin Pharmacol 7(4):381–391

    Article  CAS  PubMed  Google Scholar 

  • Gallogly MM, Starke DW, Mieyal JJ (2009) Mechanistic and kinetic details of catalysis of thiol-disulfide exchange by glutaredoxins and potential mechanisms of regulation. Antioxidants & redox signaling 11(5):1059–1081

    Article  CAS  Google Scholar 

  • Gandhi S, Abramov AY (2012) Mechanism of oxidative stress in neurodegeneration. Oxid Med Cell Longev 2012:428010–428021

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Gao F et al (2013a) Rotenone directly induces BV2 cell activation via the p38 MAPK pathway. PloS One 8(8):e72046

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gao X-H et al (2013b) Aging-dependent changes in rat heart mitochondrial glutaredoxins—implications for redox regulation. Redox Biol 1(1):586–598

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Garcia-Garcia A et al (2012) Thiol-redox signaling, dopaminergic cell death, and Parkinson’s disease. Antioxid Redox Signal 17(12):1764–1784

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Geetha T et al (2012) TRAF6 and p62 inhibit amyloid β-induced neuronal death through p75 neurotrophin receptor. Neurochem Int 61(8):1289–1293

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gilgun-Sherki Y, Melamed E, Offen D (2006) Anti-Inflammatory drugs in the treatment of neurodegenerative diseases: current state. Curr Pharm Des 12(27):3509–3519

    Article  CAS  PubMed  Google Scholar 

  • Goyette J, Geczy CL (2011) Inflammation-associated S100 proteins: new mechanisms that regulate function. Amino Acids 41(4):821–842

    Article  CAS  PubMed  Google Scholar 

  • Greiner R et al (2013) Polysulfides link H2S to protein thiol oxidation. Antioxid Redox Signal 19(15):1749–1765

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Griffin WST (2008) Perispinal etanercept: potential as an Alzheimer therapeutic. J Neuroinflammation 5:3

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Grilli M et al (1995) Identification and characterization of a B/Rel binding site in the regulatory region of the amyloid precursor protein gene. J Neurosci 270(45):26774–26777. doi:10.1074/jbc.270.45.26774

    CAS  Google Scholar 

  • Group AR et al (2008) Cognitive function over time in the Alzheimer’s disease anti-inflammatory prevention trial (ADAPT). Arch Neurol 65(7):896–905

    Article  Google Scholar 

  • Grumbach IM et al (2005) A negative feedback mechanism involving nitric oxide and nuclear factor kappa-B modulates endothelial nitric oxide synthase transcription. J Mol Cell Cardiol 39(4):595–603

    Article  CAS  PubMed  Google Scholar 

  • Gupta V, Carroll KS (2014) Sulfenic acid chemistry, detection and cellular lifetime. Biochim Biophys Acta 2:847–875

    Article  CAS  Google Scholar 

  • Guzmán-Martínez L, Farías GA, Maccioni RB (2012) Emerging noninvasive biomarkers for early detection of Alzheimer’s disease. Arch Med Res 43(8):663–666

    Article  PubMed  CAS  Google Scholar 

  • Gveric D et al (1998) Transcription factor NF-kappaB and inhibitor I kappaBalpha are localized in macrophages in active multiple sclerosis lesions. J Neuropathol Exp Neurol 57(2):168–178

    Article  CAS  PubMed  Google Scholar 

  • Hall CN, Garthwaite J (2009) What is the real physiological NO concentration in vivo? Nitric Oxide 21:92–103

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hall J et al (2014) Biomarkers of vascular risk, systemic inflammation and microvascular pathology and neuropsychiatric symptoms in Alzheimer’s disease. J Alzheimers Dis 35(2):363–371

    Google Scholar 

  • Halle A et al (2008) The NALP3 inflammasome is involved in the innate immune response to amyloid-beta. Nat Immunol 9(8):857–865

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Halliwell B (2006) Oxidative stress and neurodegeneration: Where are we now? J Neurochem 97(6):1634–1658

    Article  CAS  PubMed  Google Scholar 

  • Halloran M, Parakh S, Atkin JD (2013) The role of s-nitrosylation and s-glutathionylation of protein disulphide isomerase in protein misfolding and neurodegeneration. Int J Cell Biol 2013:797914. doi:10.1155/2013/797914

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Harms AS et al (2011) Delayed dominant-negative TNF gene therapy halts progressive loss of nigral dopaminergic neurons in a rat model of Parkinson’s disease. Mol Ther 19(1):46–52

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Harraz MM et al (2008) SOD1 mutations disrupt redox-sensitive Rac regulation of NADPH oxidase in a familial ALS model. J Clin Investig 118(2):659–670

    PubMed Central  CAS  PubMed  Google Scholar 

  • Heneka MT et al (2013) NLRP3 is activated in Alzheimer’s disease and contributes to pathology in APP/PS1 mice. Nature 493(7434):674–678

    Article  CAS  PubMed  Google Scholar 

  • Hernandez-Cuellar E et al (2012) Cutting edge: nitric oxide inhibits the NLRP3 inflammasome. J Immunol (Baltimore, Md.: 1950) 189(11):5113–5117

    Article  CAS  Google Scholar 

  • Hess DT et al (2005) Protein S-nitrosylation: purview and parameters. Nat Rev Mol Cell Biol 6(2):150–166

    Article  CAS  PubMed  Google Scholar 

  • Hilliard B et al (1999) Experimental autoimmune encephalomyelitis in NF-kappa B-deficient mice: roles of NF-kappa B in the activation and differentiation of autoreactive T cells. J Immunol 163(5):2937–2943

    CAS  PubMed  Google Scholar 

  • Ho Y et al (2008) Targeted disruption of the glutaredoxin 1 gene does not sensitize adult mice to tissue injury induced by ischemia/reperfusion and hyperoxia. Free Radic Biol Med 43(9):1299–1312

    Article  CAS  Google Scholar 

  • Hollingworth P et al (2011) Alzheimer’s disease genetics: current knowledge and future challenges. Int J Geriatr Psychiatry 26(8):793–802

    Article  PubMed  Google Scholar 

  • Huang Y et al (2005) NF-kappaB precursor, p105, and NF-kappaB inhibitor, IkappaBgamma, are both elevated in Alzheimer disease brain. Neurosci Lett 373(2):115–118

    Article  CAS  PubMed  Google Scholar 

  • Huh SH et al (2011) Ethyl pyruvate rescues nigrostriatal dopaminergic neurons by regulating glial activation in a mouse model of Parkinson’s disease. J Immunol (Baltimore, Md.: 1950) 187(2):960–969

    Article  CAS  Google Scholar 

  • Hull J et al (2015) Regional Increase in the expression of the BCAT proteins in Alzheimer’s disease brain: implications in glutamate toxicity. J Alzheimers Dis. doi:10.3233/JAD-142970

    Google Scholar 

  • Ii M et al (1996) beta-Amyloid protein-dependent nitric oxide production from microglial cells and neurotoxicity. Brain Res 720(1–2):93–100

    Article  CAS  PubMed  Google Scholar 

  • Imai Y, Kohsaka S (2002) Intracellular signaling in M-CSF-induced microglia activation: role of Iba1. Glia 40(2):164–174

    Article  PubMed  Google Scholar 

  • Into T et al (2008) Regulation of MyD88-dependent signaling events by S nitrosylation retards toll-like receptor signal transduction and initiation of acute-phase immune responses. Mol Cell Biol 28(4):1338–1347

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ishibashi K et al (2006) Absence of synaptophysin near cortical neurons containing oligomer Abeta in Alzheimer’s disease brain. J Neurosci Res 636(April):632–636

    Article  CAS  Google Scholar 

  • Jaffrey SR et al (2001) Protein S-nitrosylation: a physiological signal for neuronal nitric oxide. Nat Cell Biol 3(February):193–197

    Article  CAS  PubMed  Google Scholar 

  • Johnson WM, Wilson-Delfosse AL, Mieyal JJ (2012) Dysregulation of glutathione homeostasis in neurodegenerative diseases. Nutrients 4(10):1399–1440

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Johri A, Beal MF (2012) Antioxidants in Huntington’s disease. Biochim et Biophys Acta 5:664–674

    Article  CAS  Google Scholar 

  • Jung C et al (2001) Synthetic superoxide dismutase/catalase mimetics reduce oxidative stress and prolong survival in a mouse amyotrophic lateral sclerosis model. Neurosci Lett 304(3):157–160

    Article  CAS  PubMed  Google Scholar 

  • Kanwar J (2005) Anti-inflammatory immunotherapy for multiple sclerosis/experimental autoimmune encephalomyelitis (EAE) disease. Curr Med Chem 12(25):2947–2962

    Article  CAS  PubMed  Google Scholar 

  • Kashfi K (2012) Nitric oxide–releasing hybrid drugs target cellular processes through S-nitrosylation. For Immunopathol Dis Therap 3(2):97–108

    Article  PubMed Central  PubMed  Google Scholar 

  • Katsuyama K, Hirata Y (2001) A pyrrolidinone derivative inhibits cytokine-induced iNOS expression and NF-KB activation by preventing phosphorylation and degradation of IκB-α. J Biochem 129(4):585–591

    Article  CAS  PubMed  Google Scholar 

  • Katsuyama K et al (1998) NO inhibits cytokine-induced iNOS expression and NF-kB activation by interfering with phosphorylation and degradation of IkB-a. Arterioscler Thromb Vasc Biol 18(11):1796–1802. doi:10.1161/01.ATV.18.11.1796

    Article  CAS  PubMed  Google Scholar 

  • Kawamata J, Shimohama S (2011) Stimulating nicotinic receptors trigger multiple pathways attenuating cytotoxicity in models of Alzheimer’s and Parkinson’s diseases. J Alzheimers Dis 24(Suppl 2):95–109

    CAS  PubMed  Google Scholar 

  • Kelleher ZT et al (2007) NOS2 regulation of NF-kappaB by S-nitrosylation of p65. J Biol Chem 282(42):30667–30672

    Article  CAS  PubMed  Google Scholar 

  • Kelleher ZT et al (2014) Thioredoxin-mediated denitrosylation regulates cytokine-induced nuclear factor κB (NF-κB) activation. J Biol Chem 289(5):3066–3072

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kenchappa RS et al (2004) Estrogen and neuroprotection: higher constitutive expression of glutaredoxin in female mice offers protection against MPTP-mediated neurodegeneration. FASEB J 18(10):1102–1104

    PubMed  Google Scholar 

  • Khoshnan A, Patterson PH (2011) The role of IκB kinase complex in the neurobiology of Huntington’s disease. Neurobiol Dis 43(2):305–311

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kil IS, Kim SY, Park J-W (2008) Glutathionylation regulates IkappaB. Biochem Biophys Res Commun 373(1):169–173

    Article  CAS  PubMed  Google Scholar 

  • Kim Y et al (1998) Nitric oxide prevents IL-1β and IFN-γ-inducing factor (IL-18) release from macrophages by inhibiting caspase-1(IL-1β-converting enzyme). J Immunol 161:4122–4128

    CAS  PubMed  Google Scholar 

  • Kim N-H et al (2007) Auranofin blocks interleukin-6 signalling by inhibiting phosphorylation of JAK1 and STAT3. Immunology 122(4):607–614

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kim J, Won JS, Singh AK, Sharma AK, Singh I (2014) STAT3 regulation by S-nitrosylation: implication for inflammatory disease. Antioxid Redox Signal 20(16):2514–2527

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kordula T et al (2000) Mechanism of interleukin-1- and tumor necrosis factor alpha-dependent regulation of the alpha 1-antichymotrypsin gene in human astrocytes. J Neurosci 20(20):7510–7516

    CAS  PubMed  Google Scholar 

  • Kwak Y-D et al (2010) NO signaling and S-nitrosylation regulate PTEN inhibition in neurodegeneration. Mol Neurodegener 5:49

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Kwan W et al (2012) Mutant huntingtin impairs immune cell migration in Huntington disease. J Clin Investig 122(12):4737–4747

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Latz E, Xiao TS, Stutz A (2013) Activation and regulation of the inflammasomes. Nat Rev Immunol 13(6):397–411

    Article  CAS  PubMed  Google Scholar 

  • Leng A et al (2005) Tumor necrosis factor-alpha receptor ablation in a chronic MPTP mouse model of Parkinson’s disease. Neurosc Lett 375(2):107–111

    Article  CAS  Google Scholar 

  • Lian K-C et al (2010) Dual mechanisms of NF-kappaB inhibition in carnosol-treated endothelial cells. Toxicol Appl Pharmacol 245(1):21–35

    Article  CAS  PubMed  Google Scholar 

  • Liao B-C et al (2010) The glutaredoxin/glutathione system modulates NF-kappaB activity by glutathionylation of p65 in cinnamaldehyde-treated endothelial cells. Toxicological sciences: an official journal of the Society of Toxicology 116(1):151–163

    Article  CAS  Google Scholar 

  • Lim SY et al (2010) S-glutathionylation regulates inflammatory activities of S100A9. J Biol Chem 285(19):14377–14388

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lim SY et al (2013) S-nitrosylated S100A8: novel anti-inflammatory properties. J Immunol 181:5627–5636

    Article  Google Scholar 

  • Lin Y-C et al (2012) The glutathionylation of p65 modulates NF-κB activity in 15-deoxy-Δ12,14-prostaglandin J2-treated endothelial cells. Free Rad Biol Med 52(9):1844–1853

    Article  CAS  PubMed  Google Scholar 

  • Lo Conte M, Carroll KS (2013) The chemistry of thiol oxidation and detection. In: Jakob U, Reichmann D (eds) Oxidative stress and redox regulation. Springer, Berlin, pp 1–42

    Chapter  Google Scholar 

  • Lu C et al (2013) S-sulfhydration/desulfhydration and S-nitrosylation/denitrosylation: a common paradigm for gasotransmitter signaling by H2S and NO. Methods 62(2):177–181

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Martínez-Ruiz A, Lamas S (2007) Signalling by NO-induced protein S-nitrosylation and S-glutathionylation: convergences and divergences. Cardiovasc Res 75(2):220–228

    Article  PubMed  CAS  Google Scholar 

  • Mattson MP, Camandola S (2001) NF-κ B in neuronal plasticity and neurodegenerative disorders. J Clin Investig 107(3):247–254

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • McCoy MK, Tansey MG (2008) TNF signaling inhibition in the CNS: implications for normal brain function and neurodegenerative disease. J Neuroinflammation 5:45

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • McCoy MK et al (2006) Blocking soluble tumor necrosis factor signaling with dominant-negative tumor necrosis factor inhibitor attenuates loss of dopaminergic neurons in models of Parkinson’s disease. J Neurosci 26(37):9365–9375

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • McGeer PL, Rogers J, McGeer EG (2006) Inflammation, anti-inflammatory agents and Alzheimer disease: the last 12 years. J Alzheimers Dis 9(3 Suppl):271–276

    CAS  PubMed  Google Scholar 

  • Meissner F, Molawi K, Zychlinsky A (2008) Superoxide dismutase 1 regulates caspase-1 and endotoxic shock. Nat Immunol 9(8):866–872

    Article  CAS  PubMed  Google Scholar 

  • Mieyal JJ, Chock PB (2012) Posttranslational modification of cysteine in redox signaling and oxidative stress: focus on S-glutathionylation. Antioxid Redox Signal 16(6):471–475

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mieyal JJ et al (2008) Molecular mechanisms and clinical implications of reversible protein S-glutathionylation. Antioxid Redox Signal 10(11):1941–1988

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mitchell RM et al (2009) A CSF biomarker panel for identification of patients with amyotrophic lateral sclerosis. Neurology 72(1):14–19

    Article  CAS  PubMed  Google Scholar 

  • Mogi M et al (1994) Tumor necrosis factor-alpha (TNF-alpha) increases both in the brain and in the cerebrospinal fluid from parkinsonian patients. Neurosci Lett 165(1–2):208–210

    Article  CAS  PubMed  Google Scholar 

  • Monson NL et al (2014) Elevated CNS inflammation in patients with preclinical Alzheimer’s disease. J Cereb Blood Flow Metab 34(1):30–33

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mowbray M et al (2008) Topically applied nitric oxide induces T-lymphocyte infiltration in human skin, but minimal inflammation. J Investig Dermatol 128(2):352–360

    Article  CAS  PubMed  Google Scholar 

  • Murata H et al (2003) Glutaredoxin exerts an antiapoptotic effect by regulating the redox state of Akt. J Biol Chem 278(50):50226–50233

    Article  CAS  PubMed  Google Scholar 

  • Murphy MP (2012) Mitochondrial thiols in antioxidant protection and redox signaling: distinct roles for glutathionylation and other thiol modifications. Antioxid Redox Signal 16(6):476–495

    Article  CAS  PubMed  Google Scholar 

  • Mustafa AK et al (2009) H2S signals through protein S-sulfhydration. Sci Signal 2(96):72

    Article  Google Scholar 

  • Nikitovic D, Holmgren A (1996) S-Nitrosoglutathione is cleaved by the thioredoxin system with liberation of glutathione and redox regulating nitric oxide. J Biol Chem 271(32):19180–19185. doi:10.1074/jbc.271.32.19180

    Article  CAS  PubMed  Google Scholar 

  • Nolin JD et al (2014) The glutaredoxin/S-glutathionylation axis regulates interleukin-17A-induced proinflammatory responses in lung epithelial cells in association with S-glutathionylation of nuclear factor κ B family proteins. Free Rad Biol Med 73:143–153

    Article  CAS  PubMed  Google Scholar 

  • Numajiri N et al (2011) On-off system for PI3-kinase-Akt signaling through S-nitrosylation of phosphatase with sequence homology to tensin (PTEN). Proc Natl Acad Sci U S A 108(25):10349–10354

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Oeckinghaus A, Hayden MS, Ghosh S (2011) Crosstalk in NF-κB signaling pathways. Nat Immunol 12(8):695–708

    Article  CAS  PubMed  Google Scholar 

  • Olmos G, Lladó J (2014) Tumor necrosis factor alpha: a link between neuroinflammation and excitotoxicity. Mediat Inflamm 2014:861231. doi:10.1155/2014/861231

    Google Scholar 

  • Ortiz GG et al (2013) Immunology and oxidative stress in multiple sclerosis: clinical and basic approach. Clin Dev Immunol 2013:708659

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Ozawa K et al (2013) S-nitrosylation regulates mitochondrial quality control via activation of parkin. Sci Rep 3:2202

    PubMed Central  PubMed  Google Scholar 

  • Pantano C et al (2006) Redox-sensitive kinases of the nuclear factor-kB signaling pathway. Antioxid Redox Signal 8(9,10):1791–1806

    Article  CAS  PubMed  Google Scholar 

  • Park JW, Mieyal JJ, Rhee SG, Chock PB (2009) Deglutathionylation of 2-Cys peroxiredoxin is specifically catalyzed by sulfiredoxin. J Biol Chem 284(35):23364–23374

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pei D-S, Sun Y-F, Song Y-J (2009) S-nitrosylation of PTEN invovled in ischemic brain injury in rat hippocampal CA1 region. Neurochem Res 34(8):1507–1512

    Article  CAS  PubMed  Google Scholar 

  • Peng H, Libby P, Liao J (1995) Induction and stabilization of I kappa B alpha by nitric oxide mediates inhibition of NF-kappa B. J Biol Chem 270(23):14214–14219

    Article  CAS  PubMed  Google Scholar 

  • Pennisi G et al (2011) Redox regulation of cellular stress response in multiple sclerosis. Biochem Pharmacol 82(10):1490–1499

    Article  CAS  PubMed  Google Scholar 

  • Perry VH, Cunningham C, Holmes C (2007) Systemic infections and inflammation affect chronic neurodegeneration. Nat Rev Immunol 7(2):161–167

    Article  CAS  PubMed  Google Scholar 

  • Philips T, Robberecht W (2011) Neuroinflammation in amyotrophic lateral sclerosis: role of glial activation in motor neuron disease. Lancet Neurol 10(3):253–263

    Article  CAS  PubMed  Google Scholar 

  • Pineda-Molina E et al (2001) Glutathionylation of the p50 subunit of NF-kappaB: a mechanism for redox-induced inhibition of DNA binding. Biochemistry 40(47):14134–14142

    Article  CAS  PubMed  Google Scholar 

  • Poole LB, Nelson KJ (2009) Discovering mechanisms of signaling-mediated cysteine oxidation. Curr Opin Chem Biol 12(1):18–24

    Article  CAS  Google Scholar 

  • Prinarakis E et al (2008) S-glutathionylation of IRF3 regulates IRF3-CBP interaction and activation of the IFN beta pathway. EMBO J 27(6):865–875

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Qanungo S et al (2007) Glutathione supplementation potentiates hypoxic apoptosis by S-glutathionylation of p65-NFkappaB. J Biol Chem 282(25):18427–18436

    Article  CAS  PubMed  Google Scholar 

  • Qanungo S et al (2014) N-acetyl-l-cysteine sensitizes pancreatic cancers to gemcitabine by targeting the NFκB pathway. Biomed Pharmacother 68(7):855–864

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Qian J, Fulton DJR (2012) Exogenous, but not endogenous nitric oxide inhibits adhesion molecule expression in human endothelial cells. Front Physiol 3:3

    Article  PubMed Central  PubMed  Google Scholar 

  • Raftery MJ et al (2001) Novel intra- and inter-molecular sulfinamide bonds in S100A8 produced by hypochlorite oxidation. J Biol Chem 276(36):33393–33401

    Article  CAS  PubMed  Google Scholar 

  • Reinhart PH et al (2011) Identification of anti-inflammatory targets for Huntington’s disease using a brain slice-based screening assay. Neurobiol Dis 43(1):248–256

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Reisz JA et al (2013) Thiol-blocking electrophiles interfere with labeling and detection of protein sulfenic acids. FEBS J 280(23):6150–6161

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rees K et al (2011) Non-steroidal anti-inflammatory drugs as disease-modifying agents for Parkinson’s disease: evidence from observational studies (review). Cochrane Database Syst Rev (11):CD008454. doi:10.1002/14651858.CD008454

  • Reynaert NL et al (2004) Nitric oxide represses inhibitory kappaB kinase through S-nitrosylation. Proc Natl Acad Sci U S A 101(24):8945–8950

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Reynaert NL et al (2006) Dynamic redox control of NF- kappa B through of inhibitory kappaB kinase beta. PNAS 103(35):13086–13091

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rogers J et al (2007) Neuroinflammation in Alzheimer’s disease and Parkinson’s disease: are microglia pathogenic in either disorder? Int Rev Neurobiol 82(07):235–246

    Article  CAS  PubMed  Google Scholar 

  • Rojas J et al (2010) Interferon beta for primary progressive multiple sclerosis (review). Cochrane Database Syst Rev (1):CD006643. doi:10.1002/14651858.CD006643

  • Romero J, Bizzozero O (2011) Intracellular glutathione mediates the denitrosylation of protein nitrosothiols in the rat spinal cord. J Neurosci Res 87(3):701–709

    Article  CAS  Google Scholar 

  • Roy A et al (2012) Sodium phenylbutyrate controls neuroinflammatory and antioxidant activities and protects dopaminergic neurons in mouse models of Parkinson’s disease. PloS One 7(6):e38113

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sabens Liedhegner EA, Gao X-H, Mieyal JJ (2012) Mechanisms of altered redox regulation in neurodegenerative diseases—focus on S-glutathionylation. Antioxid Redox Signal 16(6):543–566

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sahin E et al (2014) Macrophage PTEN regulates expression and secretion of arginase I modulating innate and adaptive immune responses. J Immunol (Baltimore, Md.: 1950) 193(4):1717–1727

    Article  CAS  Google Scholar 

  • Saijo K et al (2009) A Nurr1/CoREST pathway in microglia and astrocytes protects dopaminergic neurons from inflammation-induced death. Cell 137(1):47–59

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sakai J et al (2012) Reactive oxygen species-induced actin glutathionylation controls actin dynamics in neutrophils. Immunity 37:1037–1049

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Salter MW, Beggs S (2014) Sublime microglia: expanding roles for the guardians of the CNS. Cell 158(1):15–24

    Article  CAS  PubMed  Google Scholar 

  • Sapp E et al (2001) Early and progressive accumulation of reactive microglia in the Huntington disease brain. J Neuropathol Exp Neurol 60(2):161–172

    Article  CAS  PubMed  Google Scholar 

  • Saresella M et al (2014) A complex proinflammatory role for peripheral monocytes in Alzheimer’s disease. J Alzheimers Dis 38(2):403–413

    CAS  PubMed  Google Scholar 

  • Schabbauer G et al (2010) Myeloid PTEN promotes inflammation but impairs bactericidal activities during murine pneumococcal pneumonia. J Immunol (Baltimore, Md.: 1950) 185(1):468–476

    Article  CAS  Google Scholar 

  • Schwartz M, Shechter R (2010) Systemic inflammatory cells fight off neurodegenerative disease. Nat Rev Neurol 6(7):405–410

    Article  CAS  PubMed  Google Scholar 

  • Sen N et al (2013) Hydrogen sulfide-linked sulfhydration of NF-kB mediates its anti-apoptotic actions. Mol Cell Biol 45(1):13–24

    Google Scholar 

  • Senftleben U et al (2001) Activation by IKKalpha of a second, evolutionary conserved, NF-kappa B signaling pathway. Science (New York, N.Y.) 293(5534):1495–1499

    Article  CAS  Google Scholar 

  • Sengupta R, Holmgren A (2013) Thioredoxin and thioredoxin reductase in relation to reversible S-nitrosylation. Antioxid Redox Signal 18(3):259–269

    Article  CAS  PubMed  Google Scholar 

  • Sengupta R et al (2007) Thioredoxin catalyzes the denitrosation of low-molecular mass and protein S-nitrosothiols. Biochemistry 46:8472–8483

    Article  CAS  PubMed  Google Scholar 

  • Shelton MD, Mieyal JJ (2012) Regulation by reversible S-glutathionylation: molecular targets implicated in inflammatory diseases. Mol Cell 25(3):332–346

    Google Scholar 

  • Shelton MD et al (2009) Glutaredoxin regulates autocrine and paracrine proinflammatory responses in retinal glial (muller) cells. J Biol Chem 284(8):4760–4766

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Slomiany BL, Slomiany A (2011) Helicobacter pylori induces disturbances in gastric mucosal Akt activation through inducible nitric oxide synthase-dependent S-nitrosylation: effect of ghrelin. ISRN Gastroenterol 2011:308727. doi:10.5402/2011/308727

    PubMed Central  PubMed  Google Scholar 

  • Sofic E et al (1992) Reduced and oxidized glutathione in the substantia nigra of patients with Parkinson’s disease. Neurosci Lett 142(2):128–130

    Article  CAS  PubMed  Google Scholar 

  • Soulet D, Cicchetti F (2011) The role of immunity in Huntington’s disease. Mol Psychiatry 16(9):889–902

    Article  CAS  PubMed  Google Scholar 

  • Starke DW, Chock PB, Mieyal JJ (2003) Glutathione-thiyl radical scavenging and transferase properties of human glutaredoxin (thioltransferase). Potential role in redox signal transduction. J Biol Chem 278(17):14607–14613

    Article  CAS  PubMed  Google Scholar 

  • Sullivan DM et al (2000) Identification of oxidant-sensitive proteins: TNF-α induces protein glutathiolation. Biochemistry 39(36):11121–11128. doi:10.1021/bi0007674

    Article  CAS  PubMed  Google Scholar 

  • Sun S-C (2013) Noncanonical NF-kB pathway. Immunol Rev 246(1):125–140

    Article  CAS  Google Scholar 

  • Sutherland GT et al (2013) Oxidative stress in Alzheimer’s disease: primary villain or physiological by-product? Redox Rep Commun Free Rad Res 18(4):134–141

    Article  CAS  Google Scholar 

  • Suzumura A (2013) Neuron-microglia interaction in neuroinflammation microglia are double-edged sword. Curr Protein Pept Sci 14:16–20

    Article  CAS  PubMed  Google Scholar 

  • Tada S et al (2011) Deleterious effects of lymphocytes at the early stage of neurodegeneration in an animal model of amyotrophic lateral sclerosis. J Neuroinflammation 8(1):19

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Takeuchi S et al (2010) Induction of protective immunity by vaccination with wild-type apo superoxide dismutase 1 in mutant SOD1 transgenic mice. J Neuropathol Exp Neurol 69(10):1044–1056

    Article  CAS  PubMed  Google Scholar 

  • Tasaki Y et al (2012) Meloxicam ameliorates motor dysfunction and dopaminergic neurodegeneration by maintaining Akt-signaling in a mouse Parkinson’s disease model. Neurosci Lett 521(1):15–19

    Article  CAS  PubMed  Google Scholar 

  • Thom SR et al (2008) Actin S-nitrosylation inhibits neutrophil beta2 integrin function. J Biol Chem 283(16):10822–10834

    Article  CAS  PubMed  Google Scholar 

  • Thom SR et al (2013) Nitric-oxide synthase-2 linkage to focal adhesion kinase in neutrophils influences enzyme activity and β2 integrin function. J Biol Chem 288(7):4810–4818

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Toohey JI (2012) The conversion of H2S to sulfane sulfur. Nat Rev Mol Cell Biol 13(12):803. doi:10.1038/nrm3391-c1

    Article  CAS  PubMed  Google Scholar 

  • Townsend DM et al (2009) Novel role for glutathione S-transferase pi. Regulator of protein S-glutathionylation following oxidative and nitrosative stress. J Biol Chem 284(1):436–445

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Träger U, Tabrizi SJ (2013) Peripheral inflammation in neurodegeneration. J Mol Med (Berlin, Germany) 91(6):673–681

    Article  CAS  Google Scholar 

  • Turner MR et al (2004) Evidence of widespread cerebral microglial activation in amyotrophic lateral sclerosis: an [11C](R)-PK11195 positron emission tomography study. Neurobiol Dis 15(3):601–609

    Article  CAS  PubMed  Google Scholar 

  • Urushitani M, Ezzi SA, Julien J-P (2007) Therapeutic effects of immunization with mutant superoxide dismutase in mice models of amyotrophic lateral sclerosis. Proc Natl Acad Sci U S A 104(7):2495–2500

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Walden H, Martinez-Torres RJ (2012) Regulation of Parkin E3 ubiquitin ligase activity. Cel Mol Life Sci 69(18):3053–3067

    Article  CAS  Google Scholar 

  • Wang J et al (2001) Reversible glutathionylation regulates actin polymerization in A431 cells. J Biol Chem 276(51):47763–47766

    CAS  PubMed  Google Scholar 

  • Wang J, Pan S, Berk BC (2007) Glutaredoxin mediates Akt and eNOS activation by flow in a glutathione reductase-dependent manner. Arterioscler Thromb Vasc Biol 27(6):1283–1288

    Article  CAS  PubMed  Google Scholar 

  • Wild E et al (2011) Abnormal peripheral chemokine profile in Huntington’s disease. PLoS Curr Hungtington Dis 1:1–9

    Google Scholar 

  • Winkler BS, Orselli SM, Rex TS (1994) The redox couple between glutathione and ascorbic acid: a chemical and physiological perspective. Free Radic Biol Med 17(4):333–349

    Article  CAS  PubMed  Google Scholar 

  • Wu DC et al (2002) Blockade of microglial activation is neuroprotective in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson disease. J Neurosci 22(5):1763–1771

    CAS  PubMed  Google Scholar 

  • Xiao Q et al (2007) Mutant SOD1(G93A) microglia are more neurotoxic relative to wild-type microglia. J Neurochem 102(6):2008–2019

    Article  CAS  PubMed  Google Scholar 

  • Xing K-Y, Lou MF (2010) Effect of age on the thioltransferase (glutaredoxin) and thioredoxin systems in the human lens. Investig Ophthalmol Vis Sci 51(12):6598–6604

    Article  Google Scholar 

  • Yang H et al (2013) The many faces of HMGB1: molecular structure-functional activity in inflammation, apoptosis, and chemotaxis. J Leukoc Biol 93(6):865–873

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yazdi AS et al (2010) Inflammatory caspases in innate immunity and inflammation. J Innate Immun 2(3):228–237

    Article  CAS  PubMed  Google Scholar 

  • Yu C, Li S, Whorton AR (2005) Redox regulation of PTEN by S-nitrosothiols. Mol Pharmacol 68(3):847–854

    CAS  PubMed  Google Scholar 

  • Yu H, Pardoll D, Jove R (2009) STATs in cancer inflammation and immunity: a leading role for STAT3. Nat Rev Cancer 9(11):798–809

    Article  CAS  PubMed  Google Scholar 

  • Yu Y, Smoligovets AA, Groves JT (2013) Modulation of T cell signaling by the actin cytoskeleton. J Cell Sci 126(Pt 5):1049–1058

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y et al (2013) Kinase AKT controls innate immune cell development and function. Immunology 140(2):143–152

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang D et al (2014) Detection of protein S-sulfhydration by a tag-switch technique. Angewandte Chemie (International ed. in English) 53(2):575–581

    Article  CAS  Google Scholar 

  • Zhao W et al (2010) Extracellular mutant SOD1 induces microglial-mediated motoneuron injury. Glia 58(2):231–243

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Clinton J. Miller, Michael E. Maguire, and George Dubyak for critical reading of manuscript prior to submission. This work was supported in part by Department of Veterans Affairs (merit review Grant BX000290 to J.J.M.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John J. Mieyal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gorelenkova Miller, O., Mieyal, J.J. Sulfhydryl-mediated redox signaling in inflammation: role in neurodegenerative diseases. Arch Toxicol 89, 1439–1467 (2015). https://doi.org/10.1007/s00204-015-1496-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-015-1496-7

Keywords

Navigation