Skip to main content
Log in

Synergistic effect of chelators and Herbaspirillum sp. GW103 on lead phytoextraction and its induced oxidative stress in Zea mays

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Phytoremediation is an in situ, low-cost strategy for cleanup of the sites contaminated with heavy metals. Experiments were conducted to assess the impact of synthetic chelators and plant growth-promoting rhizosphere bacteria (Herbaspirillum sp. GW103) on heavy metal lead (Pb) uptake in Z. mays cultivated in Pb-contaminated soil. The present study investigated the Pb phytoaccumulation rate and plant antioxidant enzyme activities in Z. mays exposed to 100 mg/kg of PbNO3. The combination of gluconic acid (GA) with Herbaspirillum sp. GW103 treatment showed higher Pb solubility (18.9 mg/kg) compared with other chelators. The chemical chelators showed the significant difference in phytoaccumulation as well as antioxidant enzyme activities. The antioxidant enzymes such as catalase, peroxidase and superoxide dismutase activities changed under Pb stress. The study indicated that increased activity of antioxidant enzymes may play as signal inducers to fight against Pb.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    Article  CAS  PubMed  Google Scholar 

  • Baker AJM, McGrath SP, Reeves RD, Smith JAC (2000) Metal hyperaccumulator plants: a review of the ecology and physiology of a biological resource for phytoremediation of metal-polluted soils. In: Terry N, Bañuelos G (eds) Phytoremediation of contaminated soil and water. CRC Press LLC, USA, pp 85–107

    Google Scholar 

  • Castillo FI, Penel I, Reppin H (1984) Peroxidase release induced by ozone in sedum album leaves. Plant Physiol 74: 846–851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chandra R, Yadav S (2010) Potential of Typha angustifolia for phytoremediation of heavy metals from aqueous solution of phenol and melanodin. Ecol Eng 36:1277–1284

    Article  Google Scholar 

  • Chandra R, Yadav S (2011) Phytoremediation of Cd, Cr, Cu, Mn, Fe, Ni, Pb and Zn from aqueous solution using Phragmites cummunis, Typha angustifolia and Cyperus esculentus. Int J Phytorem 13:580–591

    Article  CAS  Google Scholar 

  • Dhindsa RS, Plumb-Dhindsa P, Thorpe TA (1981) Leaf senescence correlated with increased levels of membrane permeability and lipid peroxidation and decreased levels of superoxide disniutase and catalase. J Exp Bot 32:93–101

    Article  CAS  Google Scholar 

  • Epstein AL, Gussman CD, Blaylock MJ, Yermiyahu U, Huang JW, Kapulnik Y, Orser CS (1999) EDTA and Pb–EDTA accumulation in Brassica juncea grown in Pb-amended soil. Plant Soil 208:87–94

    Article  CAS  Google Scholar 

  • Evangelou MWH, Ebel M, Schaeffer A (2007) Chelate assisted phytoextraction of heavy metals from soil effect, mechanism, toxicity, and fate of chelating agents. Chemosphere 68:989–1003

    Article  CAS  PubMed  Google Scholar 

  • Foyer CH, Lelandais M, Kunert KJ (1994) Photooxidative stress in plants. Physiol Plant 92:696–717

    Article  CAS  Google Scholar 

  • Gallego SM, Benavides MP, Tomaro ML (1999) Effect of cadmium ions on antioxidant defence system in sunflower cotyledons. Biol Plant 42:4955

    Article  Google Scholar 

  • Govarthanan M, Lee KJ, Cho M, Kim JS, Kamala-Kannan S, Oh B-T (2013) Significance of autochthonous Bacillus sp. KK1 on biomineralization of lead in mine tailings. Chemosphere 90:2267–2272

    Article  CAS  PubMed  Google Scholar 

  • Govarthanan M, Lee GW, Park JH, Kim JS, Lim SS, Seo SK, Cho M, Myung H, Kamala-Kannan S, Oh BT (2014) Bioleaching characteristics, influencing factors of Cu solubilization and survival of Herbaspirillum sp. GW103 in Cu contaminated mine soil. Chemosphere 109:42–48

    Article  CAS  PubMed  Google Scholar 

  • Govarthanan M, Park SH, Park YJ, Myung H, Krishnamurthy RR, Lee SH, Lovanh N, Kamala-Kannan S, Oh BT (2015a) Lead biotransformation potential of allochthonous Bacillus sp SKK11 with sesame oil cake extract in mine soil. RSC Adv 5:54564

    Article  CAS  Google Scholar 

  • Govarthanan M, Shim J, Kim SA, Kamala-Kannan S, Oh BT (2015b) (b). Isolation and characterization of multi-metal resistant Halomonas sp. MG from Tamil Nadu magnesite ore soil in India. Curr Microbiol 71:618–623

    Article  CAS  PubMed  Google Scholar 

  • Halliwell B (1982) The toxic effects of oxygen on plant tissues. In: Oberley LW (ed) Superoxide Dismutase, vol I. CRC Press, Boca Raton, pp 89–123

    Google Scholar 

  • Huang JW, Chen J, Berti WR, Cunningham SD (1997) Phytoremediation of lead contaminated soils: role of synthetic chelates in lead phytoextraction. Environ Sci Technol 3:800–805

    Article  Google Scholar 

  • Inze D, Van-Montagu M (1995) Oxidative stress in plants. Curr Opin Biotechnol 6:153–158

    Article  CAS  Google Scholar 

  • Kos B, Lestan D (2004) Chelator induced phytoextraction and in situ soil washing of Cu. Environ Pollut 132:333–339

    Article  CAS  PubMed  Google Scholar 

  • Lee GW, Lee KJ, Chae JC (2012) Genome sequence of Herbaspirillum sp. strain GW103, a plant growth promoting bacterium. J Bacteriol 194:4150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu D, Islam E, Li T, Yang X, Jin X, Mahmood Q (2008) Comparison of synthetic chelators and low molecular weight organic acids in enhancing phytoextraction of heavy metals by two ecotypes of Sedum alfredii Hance. J Hazard Mater 153:114–122

    Article  CAS  PubMed  Google Scholar 

  • Lombi E, Zhao FJ, Dunham SJ, McGrath SP (2001) Phytoremediation of heavy metal-contaminated soils: natural hyperaccumulation versus chemically enhanced phytoextraction. J Environ Qual 30:1919–1926

    Article  CAS  PubMed  Google Scholar 

  • Luo CL, Shen ZG, Li XD, Baker AJM (2006) Enhanced phytoextraction of Pb and other metals from artificially contaminated soils through the combined application of EDTA and EDDS. Chemosphere 63:1773–1784

    Article  CAS  PubMed  Google Scholar 

  • Meers SE, Qadir M, de Caritat P, Tack FMG, Du Laing G, Zia MH (2009) EDTA-assisted Pb phytoextraction. Chemosphere 74(2009):1279–1291

    PubMed  Google Scholar 

  • Mittler R, Vanderauwera S, Gollery M, Van-Breusegem F (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9:490–498

    Article  CAS  PubMed  Google Scholar 

  • Nehnevajova E, Lyubenova L, Herzig R, Schroder P, Schwitzguebel JP, Schmulling T (2012) Metal accumulation and response of antioxidant enzymes in seedlings and adult sunflower mutants with improved metal removal traits on a metal-contaminated soil. Environ Exp Bot 76:39–48

    Article  CAS  Google Scholar 

  • Ok YS, Kim SC, Kim DK, Skousen JG, Lee JS, Cheong YW, Kim SJ, Yang JE (2011) Ameliorants to immobilize Cd in rice paddy soils contaminated by abandoned metal mines in Korea. Environ Geochem Health 33:23–30

    Article  CAS  PubMed  Google Scholar 

  • Piero F, Lorenzo P, Giovanni B (1980) Use of 3, 5-dichloro-2-hydroxybenzenesulfonic acid/4-aminophenazone chromogenic system in direct enzymic assay of uric acid in serum and urine. Clin Chem 26:227–231

    Google Scholar 

  • Quartacci MF, Argilla A, Baker AJM, Navari-Izzo F (2006) Phytoextraction of metals from a multiply contaminated soil by Indian mustard. Chemosphere 63:918–925

    Article  CAS  PubMed  Google Scholar 

  • Ramachandran S, Fontanille P, Pandey A, Larroche C (2006) Gluconic acid: properties, applications and microbial production. Food Technol Biotechnol 44:185–195

    CAS  Google Scholar 

  • Romkens P, Bouwman L, Japenga J, Draaisma C (2002) Potentials and drawbacks of chelate-enhanced phytoremediation of soils. Environ Pollut 116:109–121

    Article  CAS  PubMed  Google Scholar 

  • Salin ML (1987) Toxic oxygen species and protective systems of the chloroplast. Physiol Plant 72:681–689

    Article  Google Scholar 

  • Saravanan VS, Kalaiarasan P, Madhaiyan M, Thangarju M (2007) Solubilization of insoluble zinc compounds by Gluconacetobacter diazotrophicus and the detrimental action of zinc ion (Zn2+) and zinc chelates on root knot nematode Meloidogyne incognita. Lett Appl Microbiol 44:235–241

    Article  CAS  PubMed  Google Scholar 

  • Sauer M, Porro D, Mattanovich D, Branduardi P (2008) Microbial production of organic acids: expanding the markets. Trends Biotechnol 26:100–108

    Article  CAS  PubMed  Google Scholar 

  • Shen ZG, Li XD, Wang CC, Chen HM, Chua H (2002) Lead phytoextraction from contaminated soil with high biomass plant species. J Environ Qual 31:1893–1900

    Article  CAS  PubMed  Google Scholar 

  • Shin MN, Shim J, You Y, Myung H, Bang KS, Cho M, Kamala-Kannan S, Oh BT (2012) Characterization of lead resistant endophytic Bacillus sp. MN3-4 and its potential for promoting lead accumulation in metal hyperaccumulator Alnus firma. J Hazard Mater 199–200:314–320

    Article  PubMed  Google Scholar 

  • Vassil AD, Kapulnik Y, Raskin I, Salt DE (1998) The role of EDTA in lead transport and accumulation in Indian mustard. Plant Physiol 117:447–544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu LH, Luo YM, Xing XR, Christie P (2004) EDTA-enhanced phytoremediation of heavy metal contaminated soil with Indian mustard and associated potential leaching risk. Agric Ecosyst Environ 102:307–318

    Article  CAS  Google Scholar 

  • Yang JE, Ok YS, Kim WI, Lee JS (2008) Heavy metal pollution, risk assessment and remediation in paddy soil environment: research and experiences in Korea. In: Sanchez ML (ed) Cause and effects of heavy metal pollution. Nova Science Publishers, New York

    Google Scholar 

  • Zhuang P, Yang QW, Wang HB, Shu WS (2007) Phytoextraction of heavy metals by eight plant species in the field. Water Air Soil Pollut 184:235–242

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the BK21 plus program through the National Research Foundation (NRF)funded by the Ministry of Education of Korea.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Muthusamy Govarthanan or Byung-Taek Oh.

Additional information

Communicated by Erko Stackebrandt.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Govarthanan, M., Kamala-Kannan, S., Kim, S.A. et al. Synergistic effect of chelators and Herbaspirillum sp. GW103 on lead phytoextraction and its induced oxidative stress in Zea mays . Arch Microbiol 198, 737–742 (2016). https://doi.org/10.1007/s00203-016-1231-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-016-1231-7

Keywords

Navigation