Skip to main content
Log in

Removal of cadmium, lead, and zinc from multi-metal–contaminated soil using chelate-assisted Sedum alfredii Hance

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Biodegradable chelator–assisted phytoextraction is an effective method to enhance remediation efficiency of heavy metals. A greenhouse experiment was conducted to investigate the effects of S,S-ethylenediamine disuccinic acid (EDDS), citric acid (CA), and oxalic acid (OA) application before planting on the biomass and physiological characteristics of hyperaccumulator Sedum alfredii Hance, and its cadmium (Cd), lead (Pb), and zinc (Zn) uptake. The results showed that EDDS and CA slightly inhibited the plant growth, while the 1.0 mmol kg−1 (OA-1) and 2.5 mmol kg−1 OA (OA-2.5) addition produced 55.3% and 35.2% greater shoot biomass compared with the control, which may be related to that OA can produce higher leaf chlorophyll and soluble protein contents, as well as lower concentrations of malondialdehyde. At the same time, the concentrations of Pb and Zn in leaf after OA-2.5 treatment significantly increased by 127% and 28.4%, and the Cd, Pb, and Zn uptake by shoot was obviously enhanced by 21.5%, 117%, and 44.9% for OA-1 addition and by 39.1%, 80.0%, and 58.3% for OA-2.5 addition, respectively, in comparison with the control (P < 0.05). The reductions in available contents of Cd, Pb, and Zn in soil were observed after phytoextraction by Sedum alfredii Hance when OA was treated. These findings imply that OA was suitable for facilitating Sedum alfredii Hance to remove Cd, Pb, and Zn in co-contaminated soil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Amer N, Chami ZA, Bitar LA, Mondelli D, Dumontet S (2013) Evaluation of Atriplex halimus, Medicago lupulina and Portulaca oleracea for phytoremediation of Ni, Pb, and Zn. Int J Phytoremediation 15(5):498–512

    Article  CAS  Google Scholar 

  • Anwar S, Khan S, Ashraf MY, Noman A, Zafar S, Liu LJ, Ullah S, Fahad S (2017) Impact of chelator-induced phytoextraction of cadmium on yield and ionic uptake of maize. Int J Phytoremediation 19(6):505–513

    Article  CAS  Google Scholar 

  • Anwar S, Khan S, Hussain L, Bashir R, Fahad S (2019) Chelators induced uptake of cadmium and modulation of water relation, antioxidants, and photosynthetic traits of maize. Environ Sci Pollut Res 4:1–14

    Google Scholar 

  • Bilal Shakoor M, Ali S, Hameed A, Farid M, Hussain S, Yasmeen T, Najeeb U, Bharwana SA, Abbasi GH (2014) Citric acid improves lead (Pb) phytoextraction in Brassica napus L. by mitigating Pb-induced morphological and biochemical damages. Ecotoxicol Environ Saf 109:38–47

    Article  CAS  Google Scholar 

  • Bucheliwitschel M, Egli T (2001) Environmental fate and microbial degradation of aminopolycarboxylic acids. FEMS Microbiol Rev 25:69–106

    Article  CAS  Google Scholar 

  • Chen YH, Hu L, Liu XL, Deng YW, Liu MJ, Xu B, Wang MK, Wang G (2017) Influences of king grass (Pennisetum sinese Roxb)-enhanced approaches for phytoextraction and microbial communities in multi-metal contaminated soil. Geoderma 307:253–266

    Article  CAS  Google Scholar 

  • Ehsan S, Ali S, Noureen S, Mahmood K, Farid M, Ishaque W, Shakoor MB, Rizwan M (2014) Citric acid assisted phytoremediation of cadmium by Brassica napus L. Ecotoxicol Environ Saf 106:164–172

    Article  CAS  Google Scholar 

  • Epelde L, Hernández-Allica J, Becerril JM, Blanco F, Garbisu C (2008) Effects of chelates on plants and soil microbial community: comparison of EDTA and EDDS for lead phytoextraction. Sci Total Environ 401(1–3):21–28

    Article  CAS  Google Scholar 

  • Han XQ, Xiao XY, Guo ZH, Xie YH, Zhu HW, Peng C, Liang YQ (2018) Release of cadmium in contaminated paddy soil amended with NPK fertilizer and lime under water management. Ecotoxicol Environ Saf 159:38–45

    Article  CAS  Google Scholar 

  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198

    Article  CAS  Google Scholar 

  • Feng WL, Guo ZH, Peng C, Xiao XY, Shi L, Han XQ, Ran HZ (2018) Modelling mass balance of cadmium in paddy soils under long term control scenarios. Environ Sci Process Impacts 20:1158–1166

    Article  CAS  Google Scholar 

  • Ghnaya T, Zaier H, Baioui R, Sghaier S, Lucchini G, Sacchi GA, Lutts S, Abdelly C (2013) Implication of organic acids in the long-distance transport and the accumulation of lead in Sesuvium portulacastrum and Brassica juncea. Chemosphere 90:1449–1454

    Article  CAS  Google Scholar 

  • He B, Yang XE, Ni WZ, Wei YZ, Long XX, Ye ZQ (2002) Sedum alfredii: a new lead-accumulating ecotype. Acta Bot Sin 44:1365–1370

    CAS  Google Scholar 

  • Huang B, Guo Z, Tu W, Peng C, Xiao X, Zeng P, Liu Y, Wang M, Xiong J (2018) Geochemistry and ecological risk of metal(loid)s in overbank sediments near an abandoned lead/zinc mine in Central South China. Environ Earth Sci 77(3):68

    Article  CAS  Google Scholar 

  • Jean L, Bordas F, Gautier-Moussard C, Vernay P, Hitmi A, Bollinger J (2008) Effect of citric acid and EDTA on chromium and nickel uptake and translocation by Datura innoxia. Environ Pollut 153:555–563

    Article  CAS  Google Scholar 

  • Kinraide TB, Parker DR, Zobel RW (2005) Organic acid secretion as a mechanism of aluminium resistance: a model incorporating the root cortex, epidermis, and the external unstirred layer. J Exp Bot 56:1853–1865

    Article  CAS  Google Scholar 

  • Komárek M, Tlustos P, Szákova L, Chrastný V (2008) The use of poplar during a two-year induced phytoextraction of metals from contaminated agricultural soils. Environ Pollut 151:27–38

    Article  CAS  Google Scholar 

  • Lan JC, Zhang SR, Lin HC, Li T, Xu XX, Li Y, Jia YX, Gong GS (2013) Efficiency of biodegradable EDDS, NTA and APAM on enhancing the phytoextraction of cadmium by Siegesbeckia orientalis L grown in Cd-contaminated soils. Chemosphere 91:1362–1367

    Article  CAS  Google Scholar 

  • Lesage E, Meers E, Vervaeke P, Lamsal S, Hopgood M, Tack FMG, Verloo MG (2005) Enhanced phytoextraction: II. Effect of EDTA and citric acid on heavy metal uptake by Helianthus annuus from a calcareous soil. Int J Phytoremediation 7(2):143–152

    Article  CAS  Google Scholar 

  • Li HY, Liu YG, Zeng GM, Zhou L, Wang X, Wang YQ, Wang CL, Hu XJ, Xu WH (2014) Enhanced efficiency of cadmium removal by Boehmeria nivea (L.) Gaud. in the presence of exogenous citric and oxalic acids. J Environ Sci (China) 26:2508–2516

    Article  Google Scholar 

  • Liang YQ, Wang XH, Guo ZH, Xiao XY, Peng C, Yang J, Zhou C, Zeng P (2019) Chelator-assisted phytoextraction of arsenic, cadmium and lead by Pteris vittata L. and soil microbial community structure response. Int J Phytoremediation. https://doi.org/10.1080/15226514.2019.1594685

  • Lim JM, Jin B, Butcher DJ (2012) A comparison of electrical stimulation for electrodic and EDTA-enhanced phytoremediation of lead using Indian Mustard (Brassica juncea). Bull Kor Chem Soc 33:2737–2740

    Article  CAS  Google Scholar 

  • Lindsay WL, Norvell WA (1978) Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Sci Soc Am J 42:421–428

    Article  CAS  Google Scholar 

  • Liu D, Islam E, Li TQ, Yang XE, Jin XF, Mahmood Q (2008) Comparison of synthetic chelators and low molecular weight organic acids in enhancing phytoextraction of heavy metals by two ecotypes of Sedum alfredii Hance. J Hazard Mater 153:114–122

    Article  CAS  Google Scholar 

  • Liu WT, Zhou QX, An J, Sun YB, Liu R (2010) Variations in cadmium accumulation among Chinese cabbage cultivars and screening for Cd-safe cultivars. J Hazard Mater 173:737–743

    Article  CAS  Google Scholar 

  • Liu YN, Guo ZH, Xiao XY, Wang S, Jiang ZC, Zeng P (2017) Phytostabilisation potential of giant reed for metals contaminated soil modified with complex organic fertiliser and fly ash: a field experiment. Sci Total Environ 576:292–302

    Article  CAS  Google Scholar 

  • Lu RK (1999) Soil and agro-chemistry analytical methods. Agriculture Science and Technology Press of China, Beijing

    Google Scholar 

  • Luo CL, Wang SR, Wang Y, Yang RX, Zhang G, Shen ZG (2015) Effects of EDDS and plant-growth-promoting bacteria on plant uptake of trace metals and PCBs from e-waste–contaminated soil. J Hazard Mater 286:379–385

    Article  CAS  Google Scholar 

  • Meers E, Ruttens A, Hopgood MJ, Samson D, Tack FMG (2005) Comparison of EDTA and EDDS as potential soil amendments for enhanced phytoextraction of heavy metals. Chemosphere 58:1011–1022

    Article  CAS  Google Scholar 

  • MEPPRC (Ministry of Environmental Protection of the People’s Republic of China) (2018) Soil environmental quality, risk control standard for soil contamination of agricultural land standard (GB15618-2018). China Environmental Science Press, Beijing

    Google Scholar 

  • Najeeb U, Jilani G, Ali S, Sarwar M, Xu L, Zhou WJ (2011) Insights into cadmium induced physiological and ultra-structural disorders in Juncus effusus L. and its remediation through exogenous citric acid. J Hazard Mater 186:565–574

    Article  CAS  Google Scholar 

  • Papoyan A, Pineros M, Kochian LV (2007) Plant Cd2+ and Zn2+ status effects on root and shoot heavy metal accumulation in Thlaspi caerulescens. New Phytol 175:51–58

    Article  CAS  Google Scholar 

  • Qiu RL, Thangavel P, Hu PJ, Senthilkumar P, Ying RR, Tang YT (2011) Interaction of cadmium and zinc on accumulation and sub-cellular distribution in leaves of hyperaccumulator Potentilla griffithii. J Hazard Mater 186:1425–1430

    Article  CAS  Google Scholar 

  • Quartacci MF, Irtelli B, Baker AJM, Navari-Izzo F (2007) The use of NTA and EDDS for enhanced phytoextraction of metals from a multiply contaminated soil by Brassica carinata. Chemosphere 68:1920–1928

    Article  CAS  Google Scholar 

  • Sidhu GPS, Bali AS, Singh HP, Batish DR, Kohli RK (2018) Ethylenediamine disuccinic acid enhanced phytoextraction of nickel from contaminated soils using Coronopus didymus (L.) Sm. Chemosphere 205:234–243

    Article  CAS  Google Scholar 

  • Sillanpää MET, Kurniawan TA, Lo WH (2011) Degradation of chelating agents in aqueous solution using advanced oxidation process (AOP). Chemosphere 83:1443–1460

    Article  CAS  Google Scholar 

  • Sinhal VK, Srivastava A, Singh VP (2010) EDTA and citric acid mediated phytoextraction of Zn, Cu, Pb and Cd through marigold (Tagetes erecta). J Environ Biol 31:255–259

    CAS  Google Scholar 

  • Song Y, Ammami MT, Benamar A, Mezazigh S, Wang HQ (2016) Effect of EDTA, EDDS, NTA and citric acid on electrokinetic remediation of As, Cd, Cr, Cu, Ni, Pb and Zn contaminated dredged marine sediment. Environ Sci Pollut Res 23:10577–10586

    Article  CAS  Google Scholar 

  • Sun YB, Zhou QX, An J, Liu WT, Liu R (2009) Chelator-enhanced phytoextraction of heavy metals from contaminated soil irrigated by industrial wastewater with the hyperaccumulator plant (Sedum alfredii Hance). Geoderma 150:106–112

    Article  CAS  Google Scholar 

  • Tang H, Liu YG, Gong XM, Zeng GM, Zheng BH, Wang DF, Sun ZC, Zhou L, Zeng XX (2015) Effects of selenium and silicon on enhancing antioxidative capacity in ramie (Boehmeria nivea (L.) Gaud.) under cadmium stress. Environ Sci Pollut Res Int 22:9999–10008

    Article  CAS  Google Scholar 

  • Tao Q, Hou DD, Yang XE, Li TQ (2016) Oxalate secretion from the root apex of Sedum alfredii contributes to hyperaccumulation of Cd. Plant Soil 398:139–152

    Article  CAS  Google Scholar 

  • USEPA (US Environmental Protection Agency) (1996) Acid digestion of sediments sludge and soils. pp 1–12. http://www.epa.gov/sw-846/pdfs/3050b.pdf

  • Usman ARA, Almaroai YA, Ahmad M, Vithanage M, Ok YS (2013) Toxicity of synthetic chelators and metal availability in poultry manure amended Cd, Pb and As contaminated agricultural soil. J Hazard Mater 262:1022–1030

    Article  CAS  Google Scholar 

  • Wan XM, Lei M, Yang JX (2017) Two potential multi-metal hyperaccumulators found in four mining sites in Hunan Province, China. CATENA 148:67–73

    Article  CAS  Google Scholar 

  • Wang X, Wang Y, Mahmood Q, Islam E, Jin XF, Li TQ, Yang XE, Liu D (2009) The effect of EDDS addition on the phytoextraction efficiency from Pb contaminated soil by Sedum alfredii Hance. J Hazard Mater 168:530–535

    Article  CAS  Google Scholar 

  • Wei SH, Li YM, Zhou QX, Srivastava M, Chiu SW, Zhan J, Wu ZJ, Sun TH (2010) Effect of fertilizer amendments on phytoremediation of Cd-contaminated soil by a newly discovered hyperaccumulator Solanum nigrum L. J Hazard Mater 176(1–3):269–273

    Article  CAS  Google Scholar 

  • Wu LH, Luo YM, Song J (2007) Manipulating soil metal availability using EDTA and low-molecular-weight organic acids. Phytoremediation 23:291–303

    Article  Google Scholar 

  • Wu FY, Xu FF, Ma XN, Luo WQ, Lou LQ, Wong MH (2018) Do arsenate reductase activities and oxalate exudation contribute to variations of arsenic accumulation in populations of Pteris vittata? J Soils Sediments 18:3177–3185

    Article  CAS  Google Scholar 

  • Xiao XY, Chen TB, An ZZ, Lei M, Huang ZC, Liao XY, Liu YR (2008) Potential of Pteris vittata L. for phytoremediation of sites co-contaminated with cadmium and arsenic: the tolerance and accumulation. J. Environ. Sci. 20(1):62–67

    Google Scholar 

  • Yang XE, Zhong NW, Feng NS (2001) Zinc tolerance and hyperaccumulation in a new ecotype of Sedum alfredii Hance. Acta Phytoecologica Sinica 25:665–672

    Google Scholar 

  • Yang M, Xiao XY, Miao XF, Guo ZH, Wang FY (2012) Effect of amendments on growth and metal uptake of giant reed (Arundo donax L.) grown on soil contaminated by arsenic, cadmium and lead. Trans Nonferrous Metal Soc China 22:1462–1469

    Article  CAS  Google Scholar 

  • Yin YC, Wang YQ, Liu YG, Zeng GM, Hu XJ, Hu J, Zhou L, Guo YM, Li J (2015) Cadmium accumulation and apoplastic and symplastic transport in Boehmeria nivea (L.) Gaudich on cadmium-contaminated soil with the addition of EDTA or NTA. RSC Adv 5:47584–47591

    Article  CAS  Google Scholar 

  • Zeng P, Guo ZH, Xiao XY, Peng C, Feng WL, Xin LQ, Xu Z (2019a) Phytoextraction potential of Pteris vittata L. co-planted with woody species for As, Cd, Pb and Zn in contaminated soil. Sci Total Environ 650:594–603

    Article  CAS  Google Scholar 

  • Zeng P, Guo ZH, Xiao XY, Peng C, Huang B, Feng WL (2019b) Complementarity of co-planting a hyperaccumulator with three metal(loid)-tolerant species for metal(loid)-contaminated soil remediation. Ecotoxicol Environ Saf 169:306–315

    Article  CAS  Google Scholar 

  • Zhang M, Senoura T, Yang X, Nishizawa NK (2011) Functional analysis of metal tolerance proteins isolated from Zn/Cd hyperaccumulating ecotype and nonhyperaccumulating ecotype of Sedum alfredii Hance. FEBS Lett 585:2604–2609

    Article  CAS  Google Scholar 

  • Zhao SL, Lian F, Duo L (2011) EDTA-assisted phytoextraction of heavy metals by turfgrass from municipal solid waste compost using permeable barriers and associated potential leaching risk. Bioresour Technol 102:621–626

    Article  CAS  Google Scholar 

  • Zhu XF, Zheng C, Hu YT, Jiang T, Liu Y, Dong NY, Yang JL, Zheng SJ (2011) Cadmium-induced oxalate secretion from root apex is associated with cadmium exclusion and resistance in Lycopersicon esculentum. Plant Cell Environ 34:1055–1064

    Article  CAS  Google Scholar 

Download references

Funding

This research was supported by the National Key Technology Research and Development Program of China (2015BAD05B02) and Hunan Provincial Natural Science Foundation of China (2018JJ4018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiyuan Xiao.

Additional information

Responsible editor: Gangrong Shi

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, Y., Zhou, C., Guo, Z. et al. Removal of cadmium, lead, and zinc from multi-metal–contaminated soil using chelate-assisted Sedum alfredii Hance. Environ Sci Pollut Res 26, 28319–28327 (2019). https://doi.org/10.1007/s11356-019-06041-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-019-06041-w

Keywords

Navigation