Skip to main content
Log in

Alternative validation method of satellite gradiometric data by integral transform of satellite altimetry data

  • Original Article
  • Published:
Journal of Geodesy Aims and scope Submit manuscript

Abstract

Integral transforms of the disturbing gravitational potential derived from satellite altimetry onto satellite gradiometric data are formulated, investigated and applied in this article. First, corresponding differential operators, that relate the disturbing gravitational potential to the six components of the disturbing gradiometric tensor in the spherical local north-oriented frame, are applied to the spherical Abel-Poisson integral equation. This yields six new integral equations for which respective kernel functions are given in both spectral and spatial forms. Second, truncation error formulas for each of the integral transforms are provided in the spectral form. Also expressions for the corresponding truncation error coefficients are derived. Third, practical estimators for evaluation of the disturbing gravitational gradients are formulated, and their correctness and expected accuracy are investigated. Finally, the practical estimators are applied for validation of a sample of the gradiometric data provided by the GOCE satellite mission. Obtained results demonstrate applicability of the new apparatus as an alternative validation method of the satellite gravitational gradients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Andersen OB, Knudsen P (2009) DNSC08 mean sea surface and mean dynamic topography models. J Geophys Res (Ocean) 114(C11001):12

    Google Scholar 

  • Arabelos D, Tscherning CC (1990) Simulation of regional gravity field recovery from satellite gravity gradiometer data using collocation and FFT. J Geod 64:363–382

    Google Scholar 

  • Arabelos D, Tscherning CC (1998) Calibration of satellite gradiometer data aided by ground gravity data. J Geod 72:617–625

    Article  Google Scholar 

  • Arabelos D, Tscherning CC, Veicherts M (2007) External calibration of GOCE SGG data with terrestrial gravity data: a simulation study. In: Tregoning P, Rizos C (eds) Dynamic planet, IAG Symposia Series, vol 130. Springer, Berlin, pp 337–344

    Chapter  Google Scholar 

  • Arfken G (1968) Mathematical methods for physicists. Academic Press, New York

    Google Scholar 

  • Barzaghi R, Tselfes N, Tziavos IN, Vergos GS (2009) Geoid and high resolution topography modelling in the mediterranean from gravimetry, altimetry and GOCE data: evaluation by simulation. J Geod 83:751–772

    Article  Google Scholar 

  • Benada JR (1997) Physical Oceanography Distributed Active Archive Center (PO.DAAC) Merged GDR (TOPEX/POSEIDON). Generation B, Users Handbook, Version 2.0, JPL PO.DAAC D-11007. Jet Propulsion Laboratory, California Institute of Technology, Pasadena, USA

  • Bouman J, Bosch W, Sebera J (2011) Assessment of systematic errors in the computation of gravity gradients from satellite altimetry. Mar Geod 34:85–107

    Article  Google Scholar 

  • Bouman J, Koop R (2003) Geodetic methods for calibration of GRACE and GOCE. Space Sci Rev 108:293–303

    Article  Google Scholar 

  • Bouman J, Koop R, Tscherning CC, Visser P (2004) Calibration of GOCE SGG data using high–low SST, terrestrial gravity data and global gravity field models. J Geod 78:124–137

    Article  Google Scholar 

  • Bölling C, Grafarend EW (2005) Ellipsoidal spectral properties of the Earth’s gravitational potential and its first and second derivatives. J Geod 79:300–330

    Article  Google Scholar 

  • Denker H (2003) Computation of gravity gradients for Europe for calibration/validation of GOCE data. In: Tziavos IN (ed) Gravity and geoid 2002, 3rd Meeting of the IGGC. Ziti Editions, pp 287–292

  • EGG-C (2010) GOCE L2 product data handbook. Issue 4, Revision 3, GO-MA-HPF-GS-0110. The European GOCE Gravity Consortium EGG-C

  • Eicker A (2012) Gravity field refinement by radial basis functions from in-situ satellite data. Deutsche Geodätische Kommission, Reihe C, No. 676, München, Germany

  • Eicker A, Mayer-Gürr T, Ilk KH (2005) Global gravity field solutions based on a simulation scenario of GRACE SST data and regional refinements by GOCE SGG observations. In: Jekeli C, Bastos L, Fernandes L (eds) Gravity, geoid and space missions. IAG Symposia Series, vol 129. Springer, Berlin, pp 66–71

    Chapter  Google Scholar 

  • Eicker A, Schall J, Kusche J (2014) Regional gravity modelling from spaceborne data: case studies with GOCE. Geophys J Int 196:1431–1440

    Article  Google Scholar 

  • ESA (1999) Gravity field and steady-state ocean circulation mission. ESA SP-1233(1), Report for mission selection of the four candidate earth explorer missions, ESA Publication Division

  • Eshagh M (2009a) On satellite gravity gradiometry. Doctoral Thesis, TRITA-TEC-PHD 09–004, Royal Institute of Technology, Division of Geodesy, Stockholm, Sweden

  • Eshagh M (2009b) Towards validation of satellite gradiometric data using modified version of 2nd order partial derivatives of extended Stokes’ formula. Artif Satell 44:103–129

    Google Scholar 

  • Eshagh M (2010) Least-squares modification of extended Stokes’ formula and its second-order radial derivative for validation of satellite gravity gradiometry data. J Geodyn 49:92–104

    Article  Google Scholar 

  • Eshagh M (2011a) Inversion of satellite gradiometry data using statistically modified integral formulas for local gravity field recovery. Adv Space Res 47:74–85

    Article  Google Scholar 

  • Eshagh M (2011b) On integral approach to regional gravity field modelling from satellite gradiometric data. Acta Geophys 59:29–54

    Google Scholar 

  • Eshagh M (2011c) Semi-stochastic modification of second-order radial derivative of Abel-Poisson’s formula for validating satellite gravity gradiometry data. Adv Space Res 47:757–767

    Article  Google Scholar 

  • Eshagh M (2011d) The effect of spatial truncation error on the integral inversion of satellite gravity gradiometry data. Adv Space Res 47:1238–1247

    Article  Google Scholar 

  • Eshagh M, Romeshkani M (2011) Generation of vertical–horizontal and horizontal–horizontal gravity gradients using stochastically modified integral estimators. Adv Space Res 48:1341–1358

    Article  Google Scholar 

  • Freeden W, Volker M, Nutz H (2002) Satellite-to-satellite tracking and satellite gravity gradiometry (Advanced techniques for high-resolution geopotential field determination). J Eng Math 43:19–56

    Article  Google Scholar 

  • Freeden W, Nutz H (2011) Satellite gravity gradiometry as tensorial inverse problem. Int J Geomath 2:177–218

    Article  Google Scholar 

  • Grombein T, Seitz K, Heck B (2010) Untersuchungen zur effizienten Berechnung topographischer Effekte auf den Gradiententensor am Fallbeispiel der Satellitengradiometriemission GOCE. KIT Scientific Reports 7547, Karlsruhe Institute of Technology, Karlsruhe, Germany, p 94. ISBN 978-3-86644-510-9

  • Haagmans R, Prijatna K, Omang OCD (2003) An alternative concept for validation of GOCE gradiometry results based on regional gravity. In: Tziavos IN (ed) Gravity and Geoid 2002, 3rd Meeting of the IGGC. Ziti Editions, pp 281–286

  • Heck B (1979) Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten. Deutsche Geodätische Kommission, Reihe C, No. 259, München, Germany

  • Heiskanen WA, Moritz H (1967) Physical geodesy. Freeman and Co., San Francisco

    Google Scholar 

  • Kellogg OD (1929) Foundations of potential theory. Dover Publications, New York

    Book  Google Scholar 

  • Kern M, Haagmans R (2005) Determination of gravity gradients from terrestrial gravity data for calibration and validation of gradiometric data. In: Jekeli C, Bastos L, Fernandes L (eds) Gravity, geoid and space missions. IAG Symposia Series, vol 129. Springer, Berlin, pp 95–100

    Chapter  Google Scholar 

  • Koop R, Visser P, Tscherning CC (2001) Aspects of GOCE calibration. In: Proceedings of the international GOCE user workshop, vol WPP-188. ESA/ESTEC, Noordwijk, The Netherlands, pp 95–100

  • Lieb V, Bouman J, Dettmering D, Fuchs M, Schmidt M (2015) Combination of GOCE gravity gradients in regional gravity field modelling using radial basis functions. In: Sneeuw N (Ed.) Proceedings of the 8th Hotine-Marussi Symposium, Rome, Italy, June 17–21, 2013, IAG Symposia Series, vol 142. Springer, Berlin (Accepted)

  • Martinec Z (2003) Green’s function solution to spherical gradiometric boundary-value problems. J Geod 77:41–49

    Article  Google Scholar 

  • Moritz H (2000) Geodetic reference system 1980. J Geod 74:128–133

    Article  Google Scholar 

  • Müller J, Jarecki F, Wolf KI (2003) External calibration and validation of GOCE gradients. In: Tziavos IN (ed) Gravity and geoid 2002, 3rd Meeting of the IGGC. Ziti Editions, pp 287–292

  • Novák P, Grafarend EW (2006) The effect of topographical and atmospheric masses on spaceborne gravimetric and gradiometric data. Stud Geophys et Geod 50:549–582

    Article  Google Scholar 

  • Novák P, Tenzer R (2013) Gravitational gradients at satellite altitudes in global geophysical studies. Surv Geophys 34:653–673

    Article  Google Scholar 

  • Pail R (2003) Local gravity field continuation for the purpose of in-orbit calibration of GOCE SGG observations. Adv Geosci 1:11–18

    Article  Google Scholar 

  • Paul M (1973) A method of evaluation the truncation error coefficients for geoidal heights. Bull Géodésique 110:413–425

    Article  Google Scholar 

  • Pavlis NK (1991) Estimation of geopotential differences over intercontinental locations using satellite and terrestrial measurements. Report No. 409, Department of Geodetic Science and Surveying, The Ohio State University, Columbus, Ohio, USA

  • Pavlis NK, Holmes SA, Kenyon SC, Factor JK (2012) The development and evaluation of the Earth Gravitational Model 2008 (EGM2008). J Geophys Res (Solid Earth) 117(B04406):38

    Google Scholar 

  • Rapp RH (1989) The treatment of permanent tidal effects in the analysis of satellite altimeter data for sea surface topography. Manuscr Geod 14:368–372

    Google Scholar 

  • Rummel R, Haagmans R (1991) Gravity gradients from satellite altimetry. Mar Geod 14:1–12

    Article  Google Scholar 

  • Rummel R, Teunissen M, van Gelderen M (1989) Uniquely and overdetermined geodetic boundary value problems by least squares. Bull Géodésique 63:1–33

    Article  Google Scholar 

  • Schwarz KP, Krynski J (1977) Improvement of the geoid in local areas by satellite gradiometry. Bull Géodésique 51:163–176

    Article  Google Scholar 

  • Šprlák M (2012) A graphical user interface application for evaluation of the gravitational tensor components generated by a level ellipsoid of revolution. Comput Geosci 46:77–83

    Article  Google Scholar 

  • Šprlák M, Sebera J, Vaľko M, Novák P (2014) Spherical integral formulas for upward/downward continuation of gravitational gradients onto gravitational gradients. J Geod 88:179–197

    Article  Google Scholar 

  • Tapley BD, Flechtner F, Bettadpur S, Watkins MM (2013) The status and future prospect for GRACE after the first decade. EOS Trans., Fall Meet. Suppl., Abstract G22A–01

  • Thalhammer M (1994) The geographical truncation error in satellite gravity gradiometer measurements. Manuscr Geod 19:45–54

    Google Scholar 

  • Thalhammer M (1995) Regionale Gravitationsfeldbestimmung mit zukünftigen Satellitenmissionen (SST und Gradiometrie). Deutsche Geodätische Kommission, Reihe C, Nr. 437, München, Germany

  • Tóth G, Rózsa S, Ádám J, Tziavos IN (2002) Gravity field modeling by torsion balance data—a case study in Hungary. In: Ádám J, Schwarz KP (eds) Vistas for geodesy in the new millennium. IAG Symposia Series, vol 125. Springer, Berlin, pp 193–198

    Chapter  Google Scholar 

  • Tscherning CC (1989) A local study of the influence of sampling rate, number of observed components and instrument noise on 1 deg. mean geoid and gravity anomalies determined from satellite gravity gradiometer measurements. Ric di Geod Topogr Fotogramm 5:139–146

    Google Scholar 

  • van Gelderen M, Rummel R (2001) The solution of the general geodetic boundary value problem by least squares. J Geod 75:1–11

    Article  Google Scholar 

  • Visser P, Koop R, Klees R (2000) Scientific data production quality assessment. In: Sünkel H (ed) From Eötvös to Milligal, Final Report, ESA/ESTEC, Contract No. 13392/98/NL/GD, Graz, Austria, pp 157–176

  • Vossepoel FC (2007) Uncertainties in the mean dynamic topography before the launch of the Gravity Field and Steady-State Ocean Circulation Explorer (GOCE). J Geophys Res (Ocean) 112(C05010):20

    Google Scholar 

  • Wolf KI (2007) Kombination globaler Potentialmodelle mit terrestrische Schweredaten für die Berechnung der zweiten Ableitungen des Gravitationspotentials in Satelitenbahnhöhe. Deutsche Geodätische Kommission, Reihe C, No. 603, München, Germany

  • Wolf KI, Denker H (2005) Upward continuation of ground data for GOCE calibration. In: Jekeli C, Bastos L, Fernandes L (eds) Gravity, geoid and space missions. IAG Symposia Series, vol 129. Springer, Berlin, pp 60–65

    Chapter  Google Scholar 

  • Woodworth PL, Hughes CW, Bingham RJ, Gruber T (2012) Towards worldwide height system unification using ocean information. J Geod Sci 2:302–318

    Google Scholar 

  • Yildiz H (2012) A study of regional gravity field recovery from GOCE vertical gravity gradient data in the Auvergne test area using collocation. Stud Geophy et Geod 56:171–184

    Article  Google Scholar 

  • Zielińsky JB, Petrovskaya MS (2003) The possibility of the calibration/validation of the GOCE data with the balloon-borne gradiometer. Adv Geosci 1:149–153

    Article  Google Scholar 

Download references

Acknowledgments

Michal Šprlák and Pavel Novák were supported by the project no. GA15-08045S of the Czech Science Foundation. Eliška Hamáčková was supported by the project SGS-2013-024. The authors thank P. L. Woodworth for providing the mean dynamic topography models. Thoughtful and constructive comments of three anonymous reviewers are gratefully acknowledged. Thanks are also extended to the Editor-in-Chief R. Klees and the responsible editor C. Jekeli for handling our manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michal Šprlák.

Appendices

Appendix A: Global integrals of the disturbing gravitational potential

To obtain the spectral form of truncation errors for the integral transforms of Eq. (13), some global integrals of the disturbing gravitational potential are needed. The global integrals are summarized as follows, see, e.g. Thalhammer (1994) and Eshagh (2009a):

$$\begin{aligned} \frac{2 n + 1}{4 \pi } \int \limits _{\Omega '} T(R, \Omega ') \,P_{n,0}(u)\,{\mathrm {d}}\Omega ' = T_{n}(R, \Omega ), \end{aligned}$$
(44)
$$\begin{aligned} \frac{2 n + 1}{4 \pi } \int \limits _{\Omega '} T(R, \Omega ') \,P_{n,1}(u)\,\cos \alpha \,{\mathrm {d}}\Omega ' = \frac{\partial T_{n}(R, \Omega )}{\partial \varphi }, \end{aligned}$$
(45)
$$\begin{aligned} \frac{2 n + 1}{4 \pi } \int \limits _{\Omega '} T(R, \Omega ') \,P_{n,1}(u)\,\sin \alpha \,{\mathrm {d}}\Omega '{=}\frac{1}{\cos \varphi } \frac{\partial T_{n}(R, \Omega )}{\partial \lambda },\nonumber \\ \end{aligned}$$
(46)
$$\begin{aligned}&\frac{2 n + 1}{4 \pi } \int \limits _{\Omega '} T(R, \Omega ') \,P_{n,2}(u)\,\cos 2 \alpha \,{\mathrm {d}}\Omega ' \nonumber \\&\quad = \left[ n (n + 1) T_{n}(R, \Omega ) + 2 \frac{\partial ^2 T_{n}(R, \Omega )}{\partial \varphi ^2}\right] , \end{aligned}$$
(47)
$$\begin{aligned}&\frac{2 n + 1}{4 \pi } \int \limits _{\Omega '} T(R, \Omega ') \,P_{n,2}(u)\,\sin 2 \alpha \,{\mathrm {d}}\Omega ' \nonumber \\&\quad = \frac{2}{\cos \varphi } \left[ \tan \varphi \frac{\partial T_{n}(R, \Omega )}{\partial \lambda } + \frac{\partial ^2 T_{n}(R, \Omega )}{\partial \lambda \partial \varphi }\right] . \end{aligned}$$
(48)

Appendix B: Spectral and recurrence representation of the modified truncation error coefficients

The modified truncation error coefficients \(Q_{n}^{\bullet }\), \(Q_{n}^{\bullet t}\) and \(Q_{n}^{\bullet tt}\) in the spectral form are defined in the following proposition:

Proposition 8

The spectral representations of the modified truncation error coefficients are:

$$\begin{aligned}&Q_{n}^{\bullet }(t, u_0) = \sum \limits _{k=0}^{\infty } t^{k+2} (2k + 1)\ e_{n,k} (u_0), \end{aligned}$$
(49)
$$\begin{aligned}&Q_{n}^{\bullet t}(t, u_0) = \sum \limits _{k=0}^{\infty } t^{k+1} (2k + 1)(k + 2)\ e_{n,k} (u_0),\end{aligned}$$
(50)
$$\begin{aligned}&Q_{n}^{\bullet tt}(t, u_0) = \sum \limits _{k=0}^{\infty } t^{k} (2k + 1)(k + 1)(k + 2)\ e_{n,k} (u_0), \end{aligned}$$
(51)

where:

$$\begin{aligned} e_{n,k} (u_0) = \int _{-1}^{u_0} P_{n,0} (u)\ P_{k,0} (u)\, {\mathrm {d}}u. \end{aligned}$$
(52)

Proposition 8 follows from Eqs. (40)–(42) and from the spectral form of the modified isotropic kernel \(K^{\bullet }\) given by Eq. (37). Note that Eq. (52) defines the so-called Paul coefficients, which can be evaluated by recurrence formulas, see, e.g. Paul (1973).

The modified truncation error coefficients \(Q_{n}^{\bullet }\), \(Q_{n}^{\bullet t}\) and \(Q_{n}^{\bullet tt}\) may be defined by the following set of recurrence formulas:

Proposition 9

The recurrence representations of the modified truncation error coefficients are:

\(\underline{{\mathbf {(A) for the coefficient}}\ Q_{0}^{\bullet }}\):

$$\begin{aligned} Q_{0}^{\bullet }(t, u_0)&= t (1 - t) \left( \frac{1 + t}{g_0} - 1\right) ,\nonumber \\ Q_{1}^{\bullet }(t, u_0)&= (t - 1) \left[ 1 - (t + 1) \left( g_0 - t + \frac{t u_0}{g_0}\right) \right] ,\nonumber \\ Q_{n}^{\bullet }(t, u_0)&= \frac{1 + t^2}{t}\ Q_{n-1}^{\bullet }(t, u_0)\nonumber \\&\quad - Q_{n-2}^{\bullet }(t, u_0) - \frac{t (1 - t^2)}{g_0}\ I_{n-1}(u_0), \end{aligned}$$
(53)

\(\underline{{\mathbf {(B) for the coefficient}}\ Q_{0}^{\bullet t}}\):

$$\begin{aligned} Q_{0}^{\bullet t}(t, u_0)&= 2 t - 1 \nonumber \\&\quad + \frac{1}{g_0} \left[ 1 - 3 t^2 + \frac{t (1 - t^2) (u_0 - t)}{g_0^2}\right] ,\nonumber \\ Q_{1}^{\bullet t}(t, u_0)&= t \Bigg \{3 t - g_0 + \frac{1}{g_0} \Bigg [(t + u_0) (u_0 - 2 t)\nonumber \\&\quad + \frac{2 t u_0 (u_0 - t)^2}{g_0^2}\Bigg ]\Bigg \},\nonumber \\ Q_{n}^{\bullet t}(t, u_0)&= \frac{1 + t^2}{t}\ Q_{n-1}^{\bullet t}(t, u_0)\nonumber \\&\quad - Q_{n-2}^{\bullet t}(t, u_0) - \frac{1 - t^2}{t^2}\ Q_{n-1}^{\bullet }(t, u_0)\nonumber \\&\quad - \left\{ g_0 + \frac{t}{g_0} \left[ 3 u_0 - 5 t + \frac{2 t (u_0 - t)^2}{g_0^2}\right] \right\} \nonumber \\&\qquad \times I_{n-1}(u_0), \end{aligned}$$
(54)

\(\underline{{\mathbf {(C) for the coefficient}}\ Q_{0}^{\bullet tt}}\):

$$\begin{aligned} Q_{0}^{\bullet tt}(t, u_0)&= 2 - \frac{7 t}{g_0} + \frac{u_0 - t}{g_0^3} \Bigg [2 (1 - 4 t^2)\nonumber \\&\quad + \frac{3 t (1 - t^2) (u_0 - t)}{g_0^2}\Bigg ],\nonumber \\ Q_{1}^{\bullet tt}(t, u_0)&= 6 t - g_0 + \frac{(2 t + u_0) (u_0 - 3 t) - t^2}{g_0}\nonumber \\&\quad + \frac{t (u_0 - t)}{g_0^3}\left[ (u_0 - 2 t) (5 u_0 + t) \right. \nonumber \\&\quad +\left. \frac{6 t u_0 (u_0 - t)^2}{g_0^2}\right] ,\nonumber \\ Q_{n}^{\bullet tt}(t, u_0)&= \frac{1 + t^2}{t}\ Q_{n-1}^{\bullet tt}(t, u_0) - Q_{n-2}^{\bullet tt}(t, u_0)\nonumber \\&\quad - \frac{2(1 - t^2)}{t^2}\ Q_{n-1}^{\bullet t}(t, u_0) + \frac{2}{t^3}\ Q_{n-1}^{\bullet }(t, u_0)\nonumber \\&\quad - \frac{1}{g_0} \left\{ 2 u_0 - 9 t + \frac{t (u_0 - t)}{g_0^2}\right. \nonumber \\&\quad \left. \times \left[ 7 u_0 - 13 t + \frac{6 t (u_0 - t)^2}{g_0^2}\right] \right\} \, I_{n-1}(u_0), \end{aligned}$$
(55)

where:

$$\begin{aligned} g_0 = g(t, u_0) = \sqrt{1 - 2 t u_0 + t^2}, \end{aligned}$$
(56)

and:

$$\begin{aligned} I_{0}(u_0)&= 1 + u_0, \quad I_{1}(u_0) = \frac{1}{2} (u_0^2 - 1),\nonumber \\ I_{n}(u_0)&= \frac{1}{n + 1} [(2 n - 1)\ u_0\ I_{n-1}(u_0) {-} (n - 2)\ I_{n-2}(u_0)]. \end{aligned}$$
(57)

To prove Proposition 9, we start with the modified truncation error coefficient \(Q_{n}^{\bullet }\). First, the spatial form of the modified isotropic kernel \(K^{\bullet }\), see Eq. (37), is inserted into Eq. (40). Second, we make use of the analytical solution for the resulting integral given by Pavlis (1991, Eq. A. 29a–b) and Eq. (53) immediately follow. The modified truncation error coefficients \(Q_{n}^{\bullet t}\) and \(Q_{n}^{\bullet tt}\) are the first and second derivatives of \(Q_{n}^{\bullet }\) with respect to the variable \(t\), see Eqs. (41), (42). Performing the differentiations of Eq. (53), we get the recurrence formulas of Eqs. (54) and (55).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Šprlák, M., Hamáčková, E. & Novák, P. Alternative validation method of satellite gradiometric data by integral transform of satellite altimetry data. J Geod 89, 757–773 (2015). https://doi.org/10.1007/s00190-015-0813-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00190-015-0813-5

Keywords

Navigation