Skip to main content

Determination of gravity gradients from terrestrial gravity data for calibration and validation of gradiometric GOCE data

  • Conference paper
Gravity, Geoid and Space Missions

Part of the book series: International Association of Geodesy Symposia ((IAG SYMPOSIA,volume 129))

Abstract

The satellite mission GOCE (Gravity field and steady-state ocean explorer) is the first gravity field mission of esa’s Living Planet Programme. Measurement principles are satellite-to-satellite tracking (sst) and, for the first time, satel-lite gravity gradiometry (sgg). To meet the mission goal of a 1–2 cm geoid at a spatial resolution of about 100 km, the satellite instruments will be calibrated in pre-fiight mode and prior to the measurement phases (in-flight mode). Moreover, external calibration and validation of the measurements is performed using gravity information over well-surveyed areas.

In this paper, all components of the gravity tensor are determined from terrestrial gravity data. Integral formulas based on the extended Stokes and Hotine formulas are used. It is shown that the entire tensor can be computed with an accuracy of 1.5–2.5 mE in the local North-East-Up coordinate system. In addition, the effect of white noise and a bias in the terrestrial data is studied.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arabelos D, Tscheming CC (1998) Calibration of satellite gradiometer data aided by ground gravity data. Journal of Geodesy. 72: 617–625

    Article  Google Scholar 

  • Bouman J, Koop R, Tscherning CC, Visser P (2004) Calibration of GOCE SGG data using high-low SST, terrestrial gravity data and global gravity field models. Journal of Geodesy. 78, DOI 10.1007/s00190-004-0382-5

    Google Scholar 

  • Cesare S (2002) Performance requirements and budgets for the gradiometric mission. Issue 2 GO-TN-AI-0027, Preliminary Design Review, Alenia, Turin

    Google Scholar 

  • Denker H (2002) Computation of gravity gradients for Europe for calibration/validation of GOCE data. In: Proc of the 3rd IGGC, Thessaloniki, Greece, pp 287–292

    Google Scholar 

  • Ecker E (1969) Sphärische Integralformeln in der Geodäsie. Deutsche Geodätische Kommission. Nr. 142. Munich.

    Google Scholar 

  • Haagmans R, Prijatna K, Omang O (2002) An alternative concept for validation of GOCE gradiometry results based on regional gravity. In: Proc of the 3rd IGGC, Thessaloniki, Greece, pp. 281–286

    Google Scholar 

  • Heiskanen WA, Moritz H (1967) Physical geodesy. WH Freeman and Company, San Francisco

    Google Scholar 

  • Koop R, Stelpstra D (1989) On the computation of the gravitational potential and its first and second order derivatives. Manuscripta Geodaetica. 14: 373–382.

    Google Scholar 

  • Müller J, Denker H, Jarecki F, Wolf KI (2004) Computation of calibration gradients and methods for inorbit validation of gradiometric GOCE data. Paper published in the Proceedings of the 2nd Int. GOCE user workshop in Frascati.

    Google Scholar 

  • Pail R (2002) In-orbit calibration and local gravity field continuation problem. In H. Sünkel (ed). From Eötvös to mGal+. Final Report. pp. 9–112.

    Google Scholar 

  • Pick M, Picha J, Vyskočil V (1973) Theory of the Earth’s gravity field. Elsevier, Amsterdam

    Google Scholar 

  • Reed GB (1973) Application of kinematical geodesy for determining the short wave length components of the gravity field by satellite gradiometry. Technical Report No. 201. Department of Geodetic Science. The Ohio State University. Columbus, Ohio.

    Google Scholar 

  • Thalhammer M (1994) The geographical truncation error in satellite gravity gradiometer measurements. Manuscripta Geodaetica. 19: 45–54.

    Google Scholar 

  • Tscherning CC (1976) Computation of the second-order derivatives of the normal potential based on the representation by a Legendre series. Manuscripta Geodaetica. 1:72–92.

    Google Scholar 

  • Tscherning CC (1993) Computation of covariances of derivatives of the anomalous gravity potential in a rotated reference frame. Manuscripta Geodaetica. 8(3): 115–123.

    Google Scholar 

  • Visser P, Koop R, Klees R (2000) Scientific data production quality assessment. In: Sünkel H (ed). From Eötvös to mGal. WP 4. pp. 157–176

    Google Scholar 

  • Wenzel G (1998) Ultra high degree geopotential models GPM98A, B and C to degree 1800. In: Proc Joint Meeting International Gravity Commission and International Geoid Commission, 7–12 September 1998. Trieste. Available at http://www.gik.uni-karlsruhe.de/~wenzel/gpm98abc/gpm98abc.htm

    Google Scholar 

  • Witte B (1970) Die Bestimmung von Horizontalableitungen der Schwere im Aussenraum aus einer Weiterentwicklung der Stokesschen Funktion. Gerlands Beiträge zur Geophysik. Akademische Verlagsgesellschaft. Geest and Protig KG, Leipzig. East Germany. 79, No 2. 87–94.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kern, M., Haagmans, R. (2005). Determination of gravity gradients from terrestrial gravity data for calibration and validation of gradiometric GOCE data. In: Jekeli, C., Bastos, L., Fernandes, J. (eds) Gravity, Geoid and Space Missions. International Association of Geodesy Symposia, vol 129. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-26932-0_17

Download citation

Publish with us

Policies and ethics