Skip to main content
Log in

Determination of the local tie vector between the VLBI and GNSS reference points at Onsala using GPS measurements

  • Original Article
  • Published:
Journal of Geodesy Aims and scope Submit manuscript

Abstract

Two gimbal-mounted GNSS antennas were installed on each side of the radome-enclosed 20 m VLBI radio telescope at the Onsala Space Observatory. GPS data with a 1 Hz sampling rate were recorded for five semi-kinematic and four kinematic observing campaigns. These GPS data were analysed together with data from the IGS station ONSA with an in-house Matlab-based GPS software package, using the double-difference analysis strategy. The coordinates of the GNSS antennas on the telescope were estimated for different observation angles of the telescope, at specific epochs, and used to calculate the geodetic reference point of the telescope. The local tie vector between the VLBI and the ONSA GNSS reference points in a geocentric reference frame was hence obtained. The two different types of observing campaigns gave consistent results of the estimated local tie vector and the axis offset of the telescope. The estimated local tie vector obtained from all nine campaigns gave standard deviations of 1.5, 1.0, and 2.9 mm for the geocentric X, Y, and Z components, respectively. The result of the estimated axis offset of the VLBI telescope shows a difference of 0.3 mm, with a standard deviation of 1.9 mm, with respect to a reference value obtained by two local surveys carried out in 2002 and 2008. Our results show that the presented method can be used as a complement to the more accurate but more labour intensive classical geodetic surveys to continuously monitor the local tie at co-location stations with an accuracy of a few millimetres.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abbondanza C, Altamimi Z, Sarti P, Negusini M, Vittuari L (2009) Local effects of redundant terrestrial and GPS-based tie vectors in ITRF-like combinations. J Geod 83:1031–1040. doi:10.1007/s00190-009-0321-6

    Article  Google Scholar 

  • Altamimi Z, Angermann D, Argus D, Boucher C, Chao B, Drewes H, Eanes R, Feissel M, Ferland R, Herring T, Holt B, Johannson J, Larson C, Ma C, Manning J, Meertens C, Nothnagel A, Pavlis E, Petit G, Ray J, Ries J, Scherneck H-G, Sillard P, Watkins M (2001) The terrestrial reference frame and the dynamic earth. EOS Trans 82(25):275–278

    Google Scholar 

  • Altamimi Z, Collilieux X, Métivier L (2011) ITRF2008: an improved solution of the international terrestrial reference frame. J Geod 85:457–473. doi:10.1007/s00190-011-0444-4

    Article  Google Scholar 

  • Baire Q, Bruyninx C, Legrand J, Pottiaux E, Aerts W, Defraigne P, Bergeot N, Chevalier JM (2013) Influence of different GPS receiver antenna calibration models on geodetic positioning. GPS Solut 18(4):529–539. doi:10.1007/s10291-013-0349-1

    Article  Google Scholar 

  • Boehm J, Werl B, Schuh H (2006) Troposphere mapping functions for GPS and very long baseline interferometry from European Centre for Medium-Range Weather Forecasts operational analysis data. J Geophys Res 111:B02406. doi:10.1029/2005JB003629

    Google Scholar 

  • Combrinck WL, Merry CL (1997) Very long baseline interferometry antenna axis offset and intersection determination using GPS. J Geophys Res 102(Bll):24741–24743. doi:10.1029/97JB02081

    Article  Google Scholar 

  • Dawson J, Sarti P, Johnston GM, Vittuari L (2007) Indirect approach to invariant point determination for SLR and VLBI systems: an assessment. J Geod 81(6–8):433–441. doi:10.1007/s00190-006-0125-x

    Article  Google Scholar 

  • Eschelbach C, Haas R (2005) The 2002 local tie survey at the onsala space observatory, In: Proceedings IERS workshop on site co-location, Richter B, Schwegmann W, Dick WR, (eds) IERS Technical Note, 33, Verlag des Bundesamts für Kartographie und Geodäsie, pp 55–63

  • IERS (2005) In: Richter B, Schwegmann W, Dick WR (eds) Proceedings of the IERS workshop on site co-location, Matera, Italy, 23–24 Oct 2003. IERS technical note No. 33. des Bundesamts für Kartographie und Geodäsie, Frankfurt am Main, p 148

  • Kallio U, Poutanen M (2012) Can we really promise a mm-accuracy for the local ties on a geo-VLBI antenna, In: Geodesy for Planet Earth. Proceedings of the 2009 IAG Symposium, Buenos Aires, Argentina, 31 August 31–4 September 2009, Kenyon S, Pacino M, Marti U (eds) International Association of Geodesy Symposia, vol 136. pp 35–42, Springer. doi:10.1007/978-3-642-20338-1_5

  • Lösler M (2009) New mathematical model for reference point determination of an azimuth-elevation type radio telescope. J Surv Eng 135(4):131–135

    Article  Google Scholar 

  • Lösler M, Haas R, Eschelbach C (2013) Automated and continual determination of radio telescope reference points with sub-mm accuracy: results from a campaign at the Onsala space observatory. J Geod 87(8):791–804. doi:10.1007/s00190-013-0647-y

    Article  Google Scholar 

  • Lösler M, Haas R (2009) The 2008 local-tie survey at the Onsala space observatory. In: Charlot P, Collioud A, Bourda G (eds) Proceedings of the 19th European VLBI for geodesy and astrometry working meeting, March 24–25, 2009, Bordeaux, France, pp 97–101

  • Ning T, Elgered G, Johansson JM (2011) The impact of microwave absorber and radome geometries on GNSS measurements of station coordinates and atmospheric water vapour. Adv Space Res 47(2):186–196. doi:10.1016/j.asr.2010.06.023

    Article  Google Scholar 

  • Ning T, Haas R, Elgered G, Willén U (2012) Multi-technique comparisons of ten years of wet delay estimates on the west coast of Sweden. J Geod 86(7):565–575. doi:10.1007/s00190-011-0527-2

    Article  Google Scholar 

  • Schmid R, Steigenberger P, Gendt G, Ge M, Rothacher M (2007) Generation of a consistent absolute phase center correction model for GPS receiver and satellite antennas. J Geod 81:781–798. doi:10.1007/s00190-007-0148-y

    Article  Google Scholar 

  • Snajdrova K, Boehm J, Willis P, Haas R, Schuh H (2005) Multi-technique comparison of tropospheric zenith delays derived during the CONT02 campaign. J Geod 79:613–623. doi:10.1007/s00190-005-0010-z

    Article  Google Scholar 

  • Teunissen PJG (1993) Least-squares estimation of the integer GPS ambiguities. IAG General Meeting, Invited Lecture, Section IV: Theory and methodology, Beijing, China

  • Webb FH, Zumberge JF (1993) An Introduction to the GIPSY/OASIS-II, JPL Publ. D-11088, Jet Propulsion Laboratory, Pasadena, California

  • Zumberge JF, Heflin MB, Jefferson DC, Watkins MM, Webb FH (1997) Precise point positioning for the efficient and Robust analysis of GPS data from large networks. J Geophys Res 102(B3):5005–5017. doi:10.1029/96JB03860

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Ning.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ning, T., Haas, R. & Elgered, G. Determination of the local tie vector between the VLBI and GNSS reference points at Onsala using GPS measurements. J Geod 89, 711–723 (2015). https://doi.org/10.1007/s00190-015-0809-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00190-015-0809-1

Keywords

Navigation