Skip to main content
Log in

Uniform consistency in number of neighbors of the kNN estimator of the conditional quantile model

  • Published:
Metrika Aims and scope Submit manuscript

Abstract

We are interested in the efficiency of the nonparametric estimation of the conditional quantile when the response variable is a scalar given a functional covariate. To do this, we adopt a technique which is based on the use of the k-Nearest Neighbors procedure to build a kernel estimator of this model. Then, we establish the uniform convergence in number of neighbors of the constructed estimator. Moreover, we discuss the optimal choices of different parameters that are involved in the model as well as the impacts of the obtained results. Finally, we show the applicability and efficiency of our methodology to investigate the fuel quality by using a Near-infrared spectroscopy dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. A class of functions \(\mathcal{C}\) is said to be a pointwise measurable class if, there exists a countable subclass \( \mathcal{C}_0 \) such that for any function \( g\in \mathcal{C}\) there exists a sequence of functions \((g_m)_{m\in \mathbf{\hbox {IN}}}\) in \( \mathcal{C}_0\) such that: \(|g_m(z)-g(z)|=o(1)\).

  2. An envelope function G for a class of functions \(\mathcal{C}\) is any measurable function such that: \(\sup _{g\in \mathcal{C}}|g(z)|\le G(z)\), for all z.

  3. http://www.eigenvector.com/data/SWRI/index.html.

  4. http://www.lsp.ups-tlse.fr/staph/npfda.

References

  • Al-Awadhi F, Kaid Z, Laksaci A, Ouassou I, Rachdi M (2019) Functional data analysis: local linear estimation of the \(L_1\)-conditional quantiles. Stat Methods Appl 28:217–240

    Article  MathSciNet  Google Scholar 

  • Aneiros G, Cao R, Fraiman R, Vieu P (2019a) Editorial for the special issue on functional data analysis and related topics. J Multivar Anal 170:1–3

    Article  MathSciNet  Google Scholar 

  • Aneiros G, Cao R, Vieu P (2019b) Editorial on the special issue on functional data analysis and related topics. Comput Stat 34:447–450

    Article  MathSciNet  Google Scholar 

  • Benhenni K, Ferraty F, Rachdi M, Vieu P (2007) Local smoothing regression with functional data. Comput Stat 22(3):353–369

    Article  MathSciNet  Google Scholar 

  • Bhattacharya PK, Gangopadhyay AK (1990) Kernel and nearest-neighbor estimation of a conditional quantile. Ann Stat 18:1400–1415

    Article  MathSciNet  Google Scholar 

  • Burba F, Ferraty F, Vieu P (2009) k-nearest neighbor method in functional nonparametric regression. J Nonparametr Stat 21:453–469

    Article  MathSciNet  Google Scholar 

  • Collomb G (1986) Nonparametric time series analysis and prediction: uniform almost sure convergence of the window and \(k\)-NN, autoregression estimates. Math Oper Stat Ser Stat 16:297–307

    MathSciNet  MATH  Google Scholar 

  • Einmahl U, Mason D (2005) Uniform in bandwidth consistency of kernel-type function estimators. Ann Stat 33:1380–1403

    Article  MathSciNet  Google Scholar 

  • Ezzahrioui M, Ould Saïd E (2008) Asymptotic results of a nonparametric conditional quantile estimator for functional time series data. Commun Stat Theory Methods 37:2735–2759

    Article  Google Scholar 

  • Ferraty F, Vieu P (2006) Nonparametric functional data analysis. Theory and Practice. Springer Series in Statistics. Springer, New York

    MATH  Google Scholar 

  • Iglesias-Pérez MC (2003) Estimación de la función de distribución condicional en presencia de censura y truncamiento. Estadíst Española 45:275–301

    Google Scholar 

  • Kara-Zaïtri L, Laksaci A, Rachdi M, Vieu P (2017) Data-driven \(k\)NN estimation for various problems involving functional data. J Multivar Anal 153:176–188

    Article  Google Scholar 

  • Koenker R (2005) Quantile regression. Cambridge Books. Cambridge University Press, Cambridge. https://doi.org/10.1017/CBO9780511754098

    Book  MATH  Google Scholar 

  • Koenker RW, Bassett GW (1978) Regression quantiles. Econometrica 46:33–50

    Article  MathSciNet  Google Scholar 

  • Kudraszow N, Vieu P (2013) Uniform consistency of \(k\)NN regressors for functional variables. Stat Probab Lett 83:1863–1870

    Article  Google Scholar 

  • Laksaci A, Lemdani M, Ould Saïd E (2009) A generalized \(L^1\)-approach for a kernel estimator of conditional quantile with functional regressors: consistency and asymptotic normality. Stat Probab Lett 79:1065–1073

    Article  Google Scholar 

  • Ling N, Vieu P (2018) Nonparametric modelling for functional data: selected survey and tracks for future. Statistics 52:934–949

    Article  MathSciNet  Google Scholar 

  • Ling N, Aneiros G, Vieu P (2020) kNN estimation in functional partial linear modeling. Stat Pap 61:423–444

    Article  Google Scholar 

  • Manski C (1985) Semiparametric analysis of discrete response: asymptotic properties of the maximum score estimator. J Econom 27(3):313–333

    Article  MathSciNet  Google Scholar 

  • Messaci F, Nemouchi N, Ouassou I, Rachdi M (2015) Local polynomial modelling of the conditional quantile for functional data. Stat Methods Appl 29(1):597–622

    Article  MathSciNet  Google Scholar 

  • Rachdi M, Vieu P (2007) Nonparametric regression for functional data: automatic smoothing parameter selection. J Stat Plann Inference 137(9):2784–2801

    Article  MathSciNet  Google Scholar 

  • Ramsay JO, Silverman BW (2005) Functional data analysis, 2nd edn. Springer, New York

    Book  Google Scholar 

  • Shang HL (2016) A Bayesian approach for determining the optimal semi-metric and bandwidth in scalar-on-function quantile regression with unknown error density and dependent functional data. J Multivar Anal 146:95–104

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are grateful to an anonymous referee and the associate-editor, whose careful reading gave them the opportunity to improve the quality of the first versions of the paper. They are very grateful to the Deanship of Scientific Research at King Khalid University, Kingdom of Saudi Arabia for supporting and funding this work through the research groups program under the Project Number R.G.P.2/68/41.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elias Ould Saïd.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

For the sake of brevity we prove only the Lemma 2. The proof of Lemma 3 is omitted. In fact, it’s similar to that of Lemma 2 in Kara-Zaïtri et al. (2017).

Proof of Lemma 2. We write that

$$\begin{aligned}{}[t_p(x)-\delta ,\, t_p(x)+\delta ]\subset \bigcup _{j=1}^{d_n}\left( t_j-l_n, t_j+l_n\right) , \end{aligned}$$

with \(\displaystyle l_n=n^{-1/2}\) and \(d_n=O\left( n^{1/2 }\right) \). Furthermore, the monotonies of \({\mathrm {I\!E}}[\widehat{F }_N(x,\cdot )]\) and \(\widehat{F }_N(x,\cdot )\) imply that for \(1\le j\le d_n\)

$$\begin{aligned} {\mathrm {I\!E}}\left[ \widehat{F }_N(x,t_j-l_n)\right]\le & {} \sup _{t\in (t_j-l_n, t_j+l_n)}{\mathrm {I\!E}}\left[ \widehat{F }_N(x,t)\right] \le {\mathrm {I\!E}}\left[ \widehat{F }_N(x,t_j+l_n)\right] ,\\ \widehat{F }_N(x,t_j-l_n)\le & {} \sup _{t\in (t_j-l_n, t_j+l_n)}\widehat{F }_N(x,t)\le \widehat{F }_N(x,t_j+l_n). \end{aligned}$$

It follows that

$$\begin{aligned}&{\sup _{t\in [t_p(x)-\delta ,\, t_p(x)+\delta ]}\left| \widehat{F }_N(x,t) -{\mathrm {I\!E}}\left[ \widehat{F }_N(x,t)\right] \right| }\\&\quad \le \max _{1\le j\le d_n} \max _{z\in \{t_j-l_n, t_j+l_n\}}\left| \widehat{F }_N(x,z)- {\mathrm {I\!E}}\left[ \widehat{F }_N(x,z)\right] \right| +2Cl_n. \end{aligned}$$

Then, it is easy to prove that \(\displaystyle l_n^{}=o\left( \frac{\log n}{n\,\phi _x(a_n)}\right) ^{1/2}.\) So, it suffices to show that

$$\begin{aligned} \sup _{a_n\le h\le b_n}\max _{1\le j\le d_n}\max _{z\in \{t_j-l_n,t_j+l_n\}}\left| \widehat{F }_N(x,z)- {\mathrm {I\!E}}\left[ \widehat{F }_N(x,z)\right] \right| =O\left( \frac{\log n}{n\,\phi _x(a_n)}\right) ^{1/2}, \; a.co. \end{aligned}$$
(3)

To do that we write that

$$\begin{aligned}&{{\mathrm {I\!P}}\left( \sup _{a_n\le h\le b_n}\max _{1\le j\le d_n} \max _{z\in \{t_j-l_n,t_j+l_n\}}\left| \widehat{F }_N(x,z)- {\mathrm {I\!E}}\left[ \widehat{F }_N(x,z)\right] \right|> {\eta }\sqrt{\frac{\log n}{n\phi _x(a_n)}}\right) } \\&\quad \le \ 2d_n\max _{1\le j\le d_n}\max _{z\in \{t_j-l_n,t_j+l_n\}}{\mathrm {I\!P}}\left( \sup _{a_n\le h\le b_n} \left| \widehat{F }_N(x, z)-{\mathrm {I\!E}}[\widehat{F }_N(x, z)]\right| >{\eta }\sqrt{\frac{\log n}{n \phi _x(a_n)}}\right) . \end{aligned}$$

So, all what is left to be shown is to evaluate the following quantity

$$\begin{aligned} {\mathrm {I\!P}}\left( \sup _{a_n\le h\le b_n}\left| \widehat{F }_N(x, z)-{\mathrm {I\!E}}[\widehat{F }_N(x, z)] \right| >{\eta }\sqrt{\frac{\log n }{n\phi _x(a_n)}}\right) , \, \text{ for } \text{ all } \, z=t_j\mp l_n, \, 1\le j\le d_n. \end{aligned}$$

The proof of the latter follow similar ideas as in Einmahl and Mason (2005) which are based on the Bernstein’s inequality for empirical processes

where \(K_i=K\left( h^{-1}d(x,X_{ i})\right) \). Thereafter, we get

$$\begin{aligned} {\mathrm {I\!P}}\left( \sup _{a_n\le h\le b_0} \sqrt{\frac{n\phi _x(h)}{\log n}}\left| \widehat{F }_N(x, z)-{\mathrm {I\!E}}[\widehat{F }_N(x, z)]\right| \ge \eta _0'\right) \le \log (n)n^{-C'\eta _0^2}. \end{aligned}$$

Consequently, an appropriate choice of \(\eta _0\) permits to deduce (3).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Laksaci, A., Ould Saïd, E. & Rachdi, M. Uniform consistency in number of neighbors of the kNN estimator of the conditional quantile model. Metrika 84, 895–911 (2021). https://doi.org/10.1007/s00184-021-00806-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00184-021-00806-5

Keywords

Mathematics Subject Classification

Navigation