Skip to main content
Log in

Functional data analysis: local linear estimation of the \(L_1\)-conditional quantiles

  • Original Paper
  • Published:
Statistical Methods & Applications Aims and scope Submit manuscript

Abstract

We consider a new estimator of the quantile function of a scalar response variable given a functional random variable. This new estimator is based on the \(L_1\) approach. Under standard assumptions, we prove the almost-complete consistency as well as the asymptotic normality of this estimator. This new approach is also illustrated through some simulated data and its superiority, compared to the classical method, has been proved for practical purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. Let \((z_n)\) for \({n\in \mathbb {N}}\), be a sequence of real r.v.’s. We say that \((z_n)\) converges almost-completely (a.co.) toward zero if, and only if, for all \(\epsilon > 0\), \(\sum _{n=1}^\infty P(|z_n| >\epsilon ) < \infty \). Moreover, we say that the rate of the almost-complete convergence of \((z_n)\) toward zero is of order \(u_n\) (with \(u_n\rightarrow 0)\) and we write \(z_n = O_{a.co.}(u_n)\) if, and only if, there exists \(\epsilon > 0\) such that \(\sum _{n=1}^\infty P(|z_n| >\epsilon u_n) < \infty \). This kind of convergence implies both almost-sure convergence and convergence in probability.

References

  • Barrientos J, Ferraty F, Vieu P (2010) Locally modelled regression and functional data. J Nonparametr Stat 22(5):617–632

    Article  MathSciNet  MATH  Google Scholar 

  • Benhenni K, Ferraty F, Rachdi M, Vieu P (2007) Local smoothing regression with functional data. Comput Stat 22(3):353–369

    Article  MathSciNet  MATH  Google Scholar 

  • Berlinet A, Elamine A, Mas A (2011) Local linear regression for functional data. Ann Inst Stat Math 63:1047–1075

    Article  MathSciNet  MATH  Google Scholar 

  • Baíllo A, Grané A (2009) Local linear regression for functional predictor and scalar response. J Multivar Anal 100:102–111

    Article  MathSciNet  MATH  Google Scholar 

  • Chaudhuri P (1996) On a geometric notation of quantiles for multivariate data. J Am Stat Assoc 91:862–872

    Article  MATH  Google Scholar 

  • Crambes Ch, Gannoun A, Henchiri Y (2013a) Support vector machine quantile regression approach for functional data: simulation and application studies. J Multivar Anal 121:50–68

    Article  MathSciNet  MATH  Google Scholar 

  • Crambes Ch, Gannoun A, Henchiri Y (2013b) Modelling functional additive quantile regression using support vector machines approach. J Nonparametr Stat 26:639–668

    Article  MathSciNet  MATH  Google Scholar 

  • Dabo-Niang S, Kaid Z, Laksaci A (2015) Asymptotic properties of the kernel estimator of spatial conditional mode when the regressor is functional. AStA Adv Stat Anal 99:131–160

    Article  MathSciNet  MATH  Google Scholar 

  • Demongeot J, Laksaci A, Madani F, Rachdi M (2013) Functional data: local linear estimation of the conditional density and its application. Statistics 47:26–44

    Article  MathSciNet  MATH  Google Scholar 

  • Demongeot J, Laksaci A, Rachdi M, Rahmani S (2014) On the local linear modelization of the conditional distribution for functional data. Sankhya A 76:328–355

    Article  MathSciNet  MATH  Google Scholar 

  • Demongeot J, Naceri A, Laksaci A, Rachdi M (2017) Local linear regression modelization when all variables are curves. Stat Probab Lett 121:37–44

    Article  MathSciNet  MATH  Google Scholar 

  • Fan J, Gijbels I (1996) Local polynomial modelling and its applications. Chapman & Hall, London

    MATH  Google Scholar 

  • Fan J, Yao Q (2003) Nolinear time series: nonparametric and parametric methods. Springer, New York

    Book  MATH  Google Scholar 

  • Ferraty F, Vieu P (2006) Nonparametric functional data analysis. Theory and practice, Springer Series in Statistics. Springer, New York

    MATH  Google Scholar 

  • Ferraty F, Laksaci A, Tadj A, Vieu P (2011) Kernel regression with functional response. Electron J Stat 5:159–171

    Article  MathSciNet  MATH  Google Scholar 

  • Hallin M, Lu Z, Yu K (2009) Local linear spatial quantile regression. Bernoulli 15:659–686

    Article  MathSciNet  MATH  Google Scholar 

  • Helal N, Ould-Said E (2016) Kernel conditional quantile estimator under left truncation for functional regressors. Opusc Math 36:25–48

    Article  MathSciNet  MATH  Google Scholar 

  • Hsing T, Eubank R (2015) Theoretical foundations of functional data analysis, with an introduction to linear operators. Wiley Series in Probability and Statistics. Wiley, Chichester

    MATH  Google Scholar 

  • Horváth L, Kokoszka P (2012) Inference for functional data with applications. Springer Series in Statistics. Springer, New York

    Book  MATH  Google Scholar 

  • Kato K (2012) Estimation in functional linear quantile regression. Ann Stat 40:3108–3136

    Article  MathSciNet  MATH  Google Scholar 

  • Koenker R, Zhao Q (1996) Conditional quantile estimation and inference for ARCH models. Econom Theory 12:793–813

    Article  MathSciNet  Google Scholar 

  • Laksaci A, Lemdani M, Ould-Said E (2009) A generalized $L^1$-approach for a kernel estimate of conditional quantile with functional regressors: consistency and asymptotic normality. Stat Probab Lett 79:1065–1073

    Article  MATH  Google Scholar 

  • Loève M (1963) Probability theory, 3rd edn. Van Nostrand, Princeton

    MATH  Google Scholar 

  • Lu Y, Du J, Sun Z (2014) Functional partially linear quantile regression model. Metrika 77:317–332

    Article  MathSciNet  MATH  Google Scholar 

  • Messaci F, Nemouchi N, Ouassou I, Rachdi M (2015) Local polynomial modelling of the conditional quantile for functional data. Stat Methods Appl 24:597–622

    Article  MathSciNet  MATH  Google Scholar 

  • Rachdi M, Vieu P (2007) Nonparametric regression for functional data automatic smoothing parametrer selection. J Stat Plan Inference 137(9):2784–2801

    Article  MATH  Google Scholar 

  • Rachdi M, Laksaci A, Demongeot J, Abdali A, Madani F (2014) Theoretical and practical aspects of the quadratic error in the local linear estimation of the conditional density for functional data. Comput Stat Data Anal 73:53–68

    Article  MathSciNet  MATH  Google Scholar 

  • Racine J, Li K (2017) Nonparametric conditional quantile estimation: a locally weighted quantile kernel approach. J Econom 201:72–94

    Article  MathSciNet  MATH  Google Scholar 

  • Ramsay JO, Silverman BW (2002) Applied functional data analysis. Methods and case studies. Springer Series in Statistics. Springer, New York

    MATH  Google Scholar 

  • Samanta M (1989) Non-parametric estimation of conditional quantiles. Stat Probab Lett 7(5):407–412

    Article  MATH  Google Scholar 

  • Stone CJ (1977) Consistent nonparametric regression. Discussion. Ann Stat 5:595–645

    Article  MATH  Google Scholar 

  • Stute W (1986) Conditional empirical processes. Ann Stat 14:638–647

    Article  MathSciNet  MATH  Google Scholar 

  • Wang K, Lin L (2015) Variable selection in semiparametric quantile modeling for longitudinal data. Commun Stat Theory Methods 44:2243–2266

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang J (2014) Analysis of variance for functional data. Monographs on Statistics and Applied Probability, 127. CRC Press, Boca Raton

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Associate-Editor and an anonymous reviewer for their valuable comments and suggestions which improved substantially the quality of this paper. The second and the third authors would like to express their gratitude to King Khalid University (Saudi Arabia) for providing administrative and technical supports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mustapha Rachdi.

Appendix

Appendix

In what follows, when no confusion is possible, we will denote by C and \(C'\) some strictly positive generic constants. Moreover, we will denote by

$$\begin{aligned} \displaystyle K_i=K(h^{-1}\varrho (x,X_i)) \hbox { and } \beta _i=\beta (x, X_i) \hbox { for } i=1,\ldots ,n. \end{aligned}$$

Then, in order to establish our asymptotic results the following lemmas will be needed.

Lemma 1

Let \((V_n)\) be a sequence of vectorial functions, such that

  1. (i)

    for all \(\lambda \ge 1\) and all vector \(\delta \)

    $$\begin{aligned} ^t(\delta ) V_n(\lambda \delta )\le \ ^t(\delta ) V_n (\delta ), \end{aligned}$$

    where \(^t u\) denotes the transpose of the vector u.

  2. (ii)

    for any positive definite matrix D and vectorial sequence \((A_n)\), such that \(\displaystyle \mathbb {P}\left( \Vert A_n\Vert \ge A\right) \rightarrow 0\) for some \(A>0\), we have

    $$\begin{aligned} \displaystyle \sup _{ \Vert \delta \Vert \le M}\Vert V_n(\delta )+\lambda _0D\delta -A_n\Vert =o_{p}(1)\ \hbox { for } \ \frac{A}{\lambda _0\lambda _1(D)}< M<\infty , \end{aligned}$$

    with \(\lambda _1(D)\) is the minimal eigenvalue of D and \(\lambda _0>0\).

then, for any vectorial sequence \((\delta _n)\), such that \(V_n(\delta _n)=o_{p}(1)\), we have

$$\begin{aligned} \Vert \delta _n\Vert \le M, \hbox { in probability.} \end{aligned}$$

\(\Vert A_n\Vert =o_{a.co .}(1)\) and \(\displaystyle \sup _{ \Vert \delta \Vert \le M}\Vert V_n(\delta )+\lambda _0D\delta -A_n\Vert =o_{a.co.}(1),\) then, for any vectorial sequence \((\delta _n)\) such that \(\displaystyle V_n(\delta _n)=o_{a.co.}(1)\), we have

$$\begin{aligned} \Vert \delta _n\Vert \le M, \hbox { a.co.} \end{aligned}$$

Proof of Lemma 1

Notice that, proofs of both results are similar. They are based on same arguments as in Koenker and Zhao (1996). For a sake of shortness, we prove the second case which is more general. Indeed, for \(\eta >0\), we have:

$$\begin{aligned} \mathbb {P}\left( \Vert \delta _n\Vert \ge M\right)= & {} \mathbb {P}\left( \Vert \delta _n\Vert \ge M,\Vert V_n(\delta _n)\Vert<\eta \right) + \mathbb {P}\left( \Vert V_n(\delta _n)\Vert \ge \eta \right) \\\le & {} \mathbb {P}\left( \inf _{\Vert \delta \Vert \ge M}\Vert V_n(\delta )\Vert <\eta \right) + \mathbb {P}\left( \Vert V_n(\delta _n)\Vert \ge \eta \right) . \end{aligned}$$

Since, for any \(\eta >0\), \(\displaystyle \sum _n\mathbb {P}\left( \Vert V_n(\delta _n)\Vert \ge \eta \right) <\infty \), then, all it remains to show is that

$$\begin{aligned} \sum _n\mathbb {P}\left( \inf _{\Vert \delta \Vert \ge M}\Vert V_n(\delta )\Vert<\eta \right) <\infty . \end{aligned}$$

Now, it is clear that any vector \(\delta \) such that \(\Vert \delta \Vert \ge M \), can be written as \(\delta =\lambda \delta _1\) for \(\lambda \ge 1\) and \(\Vert \delta _1\Vert =M\). So, by condition (i) we get

$$\begin{aligned} \left\| V_n(\delta )\right\| =\left\| -\frac{^t\delta _1V_n(\delta )}{M}\right\| \ge -\frac{^t\delta _1V_n(\delta )}{M}\ge -\frac{^t\delta _1V_n(\delta _1)}{M}, \end{aligned}$$

which implies that

$$\begin{aligned} \mathbb {P}\left( \inf _{\Vert \delta \Vert \ge M}\Vert V_n(\delta )\Vert<\eta \right) \le \mathbb {P}\left( \inf _{\Vert \delta _1\Vert =M }\left[ -\frac{\delta _1V_n(\delta _1)}{M}\right] <\eta \right) . \end{aligned}$$

Thus, it suffices to evaluate this last quantity. To do that, we write

$$\begin{aligned}&\mathbb {P}\left( \inf _{\Vert \delta _1\Vert =M}\left[ -\frac{^t\delta _1V_n(\delta _1)}{M}\right]<\eta \right) \\&\quad \le \mathbb {P}\left( \inf _{\Vert \delta _1\Vert =M}\left[ -^t\delta _1V_n(\delta _1)\right] <\eta M, \right. \\&\qquad \left. \displaystyle \inf _{\Vert \delta _1\Vert =M }\left[ -^t\delta _1\left( -f^x(t_\alpha (x))D\delta _1+A_n\right) \right] \ge 2\eta M \right) \\&\qquad +\,\mathbb {P}\left( \inf _{\Vert \delta _1\Vert =M }\left[ -^t\delta _1\left( -\lambda _0D \delta _1+A_n\right) \right] \le 2\eta M \right) \\&\quad \le \mathbb {P}\left( \sup _{\Vert \delta _1\Vert =M}\left\| V_n(\delta _1)+\lambda _0D\delta _1-A_n\right\| \ge \eta \right) \\&\qquad +\,\mathbb {P}\left( \Vert A_n\Vert \ge \lambda _0\lambda _1(D)M -2\eta \right) . \end{aligned}$$

Finally, under conditions (ii), we can choose \(\eta \) for which

$$\begin{aligned} \sum _n\mathbb {P}\left( \sup _{\Vert \delta \Vert =M }\left\| V_n(\delta _1)+\lambda _0D\delta _1-A_n\right\| \ge \eta \right) <\infty , \end{aligned}$$

and

$$\begin{aligned} \sum _n \mathbb {P}\left( \Vert A_n\Vert \ge \lambda _0\lambda _1(D)M -2\eta \right) <\infty . \end{aligned}$$

It follows that

$$\begin{aligned} \sum _n\mathbb {P}\left( \Vert \delta _n\Vert \ge M\right) <\infty . \end{aligned}$$

\(\square \)

Proof of Theorem 1

We Define, for all \(\displaystyle \delta = \left( \begin{array}{c}c \\ d \\ \end{array}\right) \),

$$\begin{aligned} \psi _\alpha (\delta )=\alpha -\mathbb {1}_{\displaystyle \left[ Y_i\le (c+a)+(h_n^{-1}d+b)\beta _i\right] ,} \end{aligned}$$

and we consider the following vectorial sequence

$$\begin{aligned} V_n(\delta )=\frac{1}{n\phi _x(h)}\sum _{i=1}^n\psi _\alpha (\delta ) \left( \begin{array}{c} 1 \\ h^{-1}\beta _i \\ \end{array} \right) K_i, \end{aligned}$$

and

$$\begin{aligned} A_n=V_n (\delta _0)\quad \text{ with }\quad \delta _0=\left( \begin{array}{c} 0 \\ 0 \\ \end{array} \right) . \end{aligned}$$

Then, the proof of the first result of Theorem 1 is based on the application of the second part of Lemma 1 on the sequences \((V_n, A_n)\) with \(\delta _n\displaystyle =\left( \begin{array}{c} \widehat{a}-a \\ h(\widehat{b}-b) \end{array} \right) \). Furthermore, the second result of Theorem 1 may be obtained by applying the first part of Lemma 1 to the sequences

$$\begin{aligned} V_n'(\delta )=\frac{\sqrt{n\phi _x(h)}}{n\phi _x(h)}\sum _{i=1}^n\Psi _\alpha (\delta ) \left( \begin{array}{c} 1 \\ h^{-1}\beta _i \\ \end{array} \right) K_i, \; A_n'=V_n'(\delta _0) \quad \text{ and }\quad \delta _n'=\sqrt{n\phi _x(h)}\delta _n, \end{aligned}$$

where

$$\begin{aligned} \Psi _\alpha (\delta )=\alpha -\mathbb {1}_{\displaystyle \left[ Y_i\le \left( \frac{1}{\sqrt{n\phi _x(h)}}c+a\right) +\left( \frac{1}{h\sqrt{n\phi _x(h)}}d+b\right) \beta _i\right] }. \end{aligned}$$

\(\square \)

Since \(\mathbb {1}_{\displaystyle [Y_i\le \cdot ]} \) is a monotone and increasing function then the condition (i), of Lemma 1, holds. So, the first result of Theorem 1 is a consequence of the following lemmas.

Lemma 2

Under Assumptions (H1)–(H5), we have

$$\begin{aligned} \Vert A_n\Vert =O(h^{\min (k_1,k_2)})+O_{a.co.}\left( \frac{\log n}{n\,\phi _x(h)}\right) ^{1/2}. \end{aligned}$$

Lemma 3

Under Assumptions (H1)–(H5), we have

$$\begin{aligned} \displaystyle \sup _{ \Vert \delta \Vert \le M}\Vert V_n(\delta )+\lambda _0D\delta -A_n\Vert =o_{a.co.}(1), \end{aligned}$$

with

$$\begin{aligned} D=\left( \begin{array}{ll} K(1)-\int _{-1}^{1}K'(t)\chi _x(t)dt&{} K(1)-\int _{-1}^{1}(tK(t))'\chi _x(t)dt \\ \\ K(1)-\int _{-1}^{1}(tK(t))'\chi _x(t)dt&{} K(1)-\int _{-1}^{1}(t^2K(t))'\chi _x(t)dt \end{array}\right) , \end{aligned}$$

and

$$\begin{aligned} \lambda _0=f^x(t_\alpha (x)). \end{aligned}$$

Concerning the asymptotic normality result we use the following lemmas.

Lemma 4

Under assumptions (H1)–(H5), we have

$$\begin{aligned} \Vert A_n'\Vert =O_p\left( 1\right) . \end{aligned}$$

Lemma 5

Under assumptions (H1)–(H5), we have

$$\begin{aligned} \displaystyle \sup _{ \Vert \delta '\Vert \le M}\Vert V_n'(\delta )+f^x(t_\alpha (x))D\delta '-A_n'\Vert =o_p(1). \end{aligned}$$

Corollary 1

Under assumptions of Lemma 5, we have

$$\begin{aligned}&\left( \sqrt{n\phi _x(h)}\right) \left( \widehat{t_\alpha }(x)-t_\alpha (x)\right) \\&\quad =\frac{1}{f^x(t_\alpha (x))(a_1a_3-a_2^2)\sqrt{n\phi _x(h)}}\sum _{i=1}^n\left( \alpha -\mathbb {1}_{\displaystyle [Y_i\le a+b\beta _i]}\right) \left( a_3K_i-a_2h^{-1}\beta _iK_i\right) . \end{aligned}$$

Lemma 6

Under the hypotheses of Theorem 1, we have, for all \(u\in \mathbb {R}\),

$$\begin{aligned} \sqrt{n\phi _x(h)}\left[ f^x(t_\alpha (x))\alpha (1-\alpha )\left( a_3^2D_1-2a_2a_3D_2+a_2^2D_3\right) \right] ^{-1}\left( \widehat{\Phi }(x)-\mathbb {E}\left[ \widehat{\Phi }(x)\right] \right) \end{aligned}$$

converges, in distribution, toward \({\mathcal {N}}(0,1)\)\(\hbox { as } n\rightarrow \infty \), where

$$\begin{aligned} \widehat{\Phi }(x)=\frac{1}{n\phi _x(h)}\sum _{i=1}^n\left( \alpha -\mathbb {1}_{\displaystyle [Y_i\le a+b\beta _i]}\right) \left( a_3K_i-a_2h^{-1}\beta _iK_i\right) . \end{aligned}$$

Proof of Lemma 2

Firstly, we set

$$\begin{aligned} \Delta ^1_i= \left( \alpha -\mathbb {1}_{\displaystyle [Y_i\le a+b\beta _i]}\right) K_i -\mathbb {E}\left[ \left( \alpha -\mathbb {1}_{\displaystyle [Y_i\le a+b\beta _i]}\right) K_i\right] \end{aligned}$$

and

$$\begin{aligned} \Delta ^2_i= \left( \alpha -\mathbb {1}_{\displaystyle [Y_i\le a+b\beta _i]}\right) \beta _iK_i -\mathbb {E}\left[ \left( \alpha -\mathbb {1}_{\displaystyle [Y_i\le a+b\beta _i]}\right) K_i\right] . \end{aligned}$$

Then

$$\begin{aligned} A_n-\mathbb {E}[A_n]= \left( \begin{array}{c} A_n^1 \\ A_n^2 \\ \end{array} \right) \end{aligned}$$

where

$$\begin{aligned} \left\{ \begin{array}{c} A_n^1=\displaystyle \frac{1}{n\phi _x(h)}\sum _{i=1}^n\Delta ^1_i \\ A_n^2=\displaystyle \frac{1}{nh\phi _x(h)}\sum _{i=1}^n\Delta ^2_i. \end{array} \right. \end{aligned}$$

It is clear that

$$\begin{aligned} |\Delta ^1_i|\le C \quad \text{ and }\quad |\Delta ^2_i|\le C' h . \end{aligned}$$

Moreover,

$$\begin{aligned} \mathbb {E}\left[ \Delta ^1_i\right] ^2\le C\phi _x(h) \quad \text{ and }\quad \mathbb {E}\left[ \Delta ^2_i\right] ^2\le C' h^2 \phi _x(h) . \end{aligned}$$

It follows that

$$\begin{aligned} A_n^1-\mathbb {E}\left[ A_n^1\right] =O_{a.co.}\left( \sqrt{\frac{\log n}{n\phi _x(h)}}\right) \end{aligned}$$

and

$$\begin{aligned} A_n^2-\mathbb {E}\left[ A_n^2\right] =O_{a.co.}\left( \sqrt{\frac{\log n}{n\phi _x(h)}}\right) . \end{aligned}$$

On the other hand, we have

$$\begin{aligned} \mathbb {E}\left[ A_n^1\right]= & {} \frac{1}{\phi _x(h) } \mathbb {E}\left[ \left( \alpha -\mathbb {1}_{\displaystyle [Y_1\le a+b\beta _1]}\right) K_1\right] \\\le & {} \displaystyle \frac{1}{\phi _x(h) }\mathbb {E}\left| F^x(t_\alpha (x))-F^{X}(a+b\beta _1)K_1\right| \\= & {} O (h^{\min (k_1,k_2)}). \end{aligned}$$

Similarly,

$$\begin{aligned} \mathbb {E}\left[ A_n^2\right]= & {} \frac{1}{h\phi _x(h) } \mathbb {E}\left[ \left( \alpha -\mathbb {1}_{\displaystyle [Y_1\le a+b\beta _1]}\right) \beta _1K_1\right] \\\le & {} \displaystyle \frac{1}{h\phi _x(h) }\mathbb {E}\left| F^x(t_\alpha (x))-F^{X}(a+b\beta _1)\beta _1K_1\right| \\= & {} O (h^{\min (k_1,k_2)}). \end{aligned}$$

Therefore,

$$\begin{aligned} \Vert A_n\Vert = O( h^{\min (k_1,k_2)})+O_{a.co.}\left( \frac{\log n}{n\,\phi _x(h)}\right) ^{1/2}. \end{aligned}$$

\(\square \)

Proof of Lemma 3

We prove that

$$\begin{aligned} \sup _{\Vert \delta \Vert \le M} \Vert V_n(\delta )-A_n-\mathbb {E}\left[ V_n(\delta )-A_n\right] \Vert =O_{a.co.}\left( \sqrt{\frac{\log n}{n\phi _x(h)}}\right) , \end{aligned}$$
(2)

and

$$\begin{aligned} \sup _{\Vert \delta \Vert \le M} \Vert \mathbb {E}\left[ V_n(\delta )-A_n\right] +f^x(t_\alpha (x))D\delta \Vert =O(h^{\min (k_1,k_2)}). \end{aligned}$$
(3)

In order to show (2) we use the compactness property of the ball B(0, M) in \(\mathbb {R}^2\) and we write

$$\begin{aligned} B(0,M)\subset \bigcup _{j=1}^{d_n}B(\delta _j,l_n), \ \delta _j=\left( \begin{array}{c} c_j \\ d_j \\ \end{array} \right) \hbox { and } l_n=d_n^{-1}=1/\sqrt{n}. \end{aligned}$$

Then, we take \(j(\delta )=\arg \min _j|\delta -\delta _j|\) and we use the fact that

$$\begin{aligned}&\sup _{\Vert \delta \Vert \le M} \Vert V_n(\delta )-A_n-\mathbb {E}\left[ V_n(\delta )-A_n\right] \Vert \\&\quad \le \sup _{\Vert \delta \Vert \le M}\Vert V_n(\delta )-V_n(\delta _j)\Vert \\&\qquad +\, \sup _{\Vert \delta \Vert \le M}\Vert V_n(\delta _j)-A_n-\mathbb {E}\left[ V_n(\delta _j)-A_n\right] \Vert \\&\qquad +\,\sup _{\Vert \delta \Vert \le M}\Vert \mathbb {E}\left[ V_n(\delta )-V_n(\delta _j)\right] . \end{aligned}$$

Since \(|\mathbb {1}_{[Y<a]}-\mathbb {1}_{[Y<b]}| \le \mathbb {1}_{\left[ |Y-b|\le |a-b|\right] } \) then

$$\begin{aligned} \sup _{\Vert \delta \Vert \le M} \Vert V_n(\delta )-V_n(\delta _j)\Vert \le \frac{1}{n\phi _x(h)}\sum _i Z_i , \end{aligned}$$

where

$$\begin{aligned} Z_i= \sup _{\Vert \delta \Vert \le M}\mathbb {1}_{\left[ |Y_i-(c_j+a)-(h^{-1}d_j+d)\beta _i|\le Cl_n\right] }\left\| \left( \begin{array}{c} 1 \\ h^{-1}\beta _i \\ \end{array} \right) \right\| K_i . \end{aligned}$$

It is clear that

$$\begin{aligned} |Z_i|\le C,\quad \mathbb {E}[Z_i]=O( l_n\phi _x(h)) \quad \text{ and } \quad \mathbb {E}[Z_i^2]=O(l_n\phi _x(h)). \end{aligned}$$

By using the fact that

$$\begin{aligned} l_n=o\left( \frac{\log n}{n\phi _x(h)}\right) ^{1/2}, \end{aligned}$$
(4)

we get

$$\begin{aligned} \sup _{\Vert \delta \Vert \le M} \Vert V_n(\delta )-V_n(\delta _j)\Vert =O_{a.co.}\left( \frac{\log n}{n\phi _x(h)}\right) ^{1/2}. \end{aligned}$$

Concerning the last term, we have

$$\begin{aligned} \sup _{\Vert \delta \Vert \le M}\Vert \mathbb {E}\left[ V_n(\delta )-V_n(\delta _j)\right] \Vert \le \frac{1}{\phi _x(h)}\mathbb {E}[Z_1]\le Cl_n, \end{aligned}$$

then, by (4) we obtain

$$\begin{aligned} \sup _{\Vert \delta \Vert \le M} \Vert \mathbb {E}\left[ V_n(\delta )-V_n(\delta _j)\right] \Vert =o_{a.co.}\left( \frac{\log n}{n\phi _x(h)}\right) ^{1/2}. \end{aligned}$$

Now, we are dealing with the quantity

$$\begin{aligned} \sup _{\Vert \delta \Vert \le M}\Vert V_n(\delta _j)-A_n-\mathbb {E}\left[ V_n(\delta _j)-A_n\right] \Vert . \end{aligned}$$

For this, we set

$$\begin{aligned} V_n(\delta _j)-A_n-\mathbb {E}\left[ V_n(\delta _j)-A_n\right] = \left( \begin{array}{c} \displaystyle W_n^1(\delta _j) \\ \displaystyle W_n^2(\delta _j) \\ \end{array} \right) , \end{aligned}$$

where

$$\begin{aligned} \left\{ \begin{array}{l} W_n^1(\delta _j)=\displaystyle \frac{1}{n\phi _x(h)}\sum _{i=1}^n\Gamma ^1_i \\ W_n^2(\delta _j)=\displaystyle \frac{1}{nh\phi _x(h)}\sum _{i=1}^n\Gamma ^2_i \end{array} \right. \end{aligned}$$

with

$$\begin{aligned} \Gamma ^1_i=\left( \psi _\alpha (\delta _j)-\psi _\alpha (\delta _0)\right) K_i-\mathbb {E}\left[ \left( \psi _\alpha (\delta _j)-\psi _\alpha (\delta _0)\right) K_i\right] , \end{aligned}$$

and

$$\begin{aligned} \Gamma ^2_i= \left( \psi _\alpha (\delta _j)-\psi _\alpha (\delta _0)\right) \beta _iK_i-\mathbb {E}\left[ \left( \psi _\alpha (\delta _j)-\psi _\alpha (\delta _0) \right) \beta _iK_i\right] . \end{aligned}$$

It is clear that

$$\begin{aligned} |\Gamma ^1_i|\le C \quad \text{ and }\quad |\Gamma ^2_i|\le C' h . \end{aligned}$$

Moreover

$$\begin{aligned} \mathbb {E}\left[ \Gamma ^1_i\right] ^2\le C\phi _x(h) \quad \text{ and }\quad \mathbb {E}\left[ \Gamma ^2_i\right] ^2\le C' h^2 \phi _x(h). \end{aligned}$$

It follows that, there exits \(\eta >0\) such that

$$\begin{aligned}&\sum _n\mathbb {P}\left( \sup _{\Vert \delta \Vert \le M}\Vert V_n(\delta _j)-A_n-\mathbb {E}\left[ V_n(\delta _j)-A_n\right] \Vert \ge \eta \sqrt{\frac{\log n}{n\phi _x(h)}} \right) \\&\quad \le \sum _n d_n \max _j \mathbb {P}\left( \Vert V_n(\delta _j)-A_n-\mathbb {E}\left[ V_n(\delta _j)-A_n\right] \Vert \ge \eta \sqrt{\frac{\log n}{n\phi _x(h)}} \right) <\infty , \end{aligned}$$

which complete the proof of (2).

Concerning the term (3) we use same arguments as for treating (2). In fact, we write

$$\begin{aligned} V_n(\delta )-A_n= \left( \begin{array}{c} W_n^1(\delta ) \\ W_n^2(\delta ) \end{array} \right) , \end{aligned}$$

where

$$\begin{aligned} W_n^1(\delta )=\frac{1}{n\phi _x(h)}\sum _{i=1}^n\left( \psi _\alpha (\delta )-\psi _\alpha (\delta _0)\right) K_i, \end{aligned}$$

and

$$\begin{aligned} W_n^2(\delta )=\frac{1}{nh\phi _x(h)}\sum _{i=1}^n \left( \psi _\alpha (\delta )-\psi _\alpha (\delta _0)\right) \beta _iK_i. \end{aligned}$$

On the other hand, we have

$$\begin{aligned} \mathbb {E}\left[ W_n^1(\delta )\right]= & {} -\frac{1}{\phi _x(h) }\mathbb {E}\left[ \left( \mathbb {1}_{\left[ Y_1\le (c+a)+(h^{-1}d+b)\beta _1\right] }-\mathbb {1}_{\left[ Y_1\le a+b\beta _1\right] }\right) K_i\right] \\= & {} -\frac{1}{\phi _x(h) }\mathbb {E}\left[ \left( F^X(((c+a)+(h^{-1}d+b)\beta _1)-F^X(a+b\beta _1)\right) K_1\right] \\= & {} -\frac{1}{\phi _x(h) }\mathbb {E}\left[ \left( F^x(((c+a)+(h^{-1}d+b)\beta _1)-F^x(a+b\beta _1)\right) K_1\right] +O(h^{k_1})\\= & {} -\frac{1}{\phi _x(h) }\mathbb {E}\left[ f^x(a+b\beta _1)\left( 1, h^{-1} \beta _1 \right) \delta K_1\right] +O(h^{k_1})+o\left( \Vert \delta \Vert \right) \\= & {} - f^x(t_\alpha (x))\frac{1}{\phi _x(h) }\left( \mathbb {E}K_1, h^{-1}\mathbb {E}[\beta _1 K_1] \right) \delta +O(h^{\min (k_1,k_2)})+o\left( \Vert \delta \Vert \right) . \end{aligned}$$

Similarly

$$\begin{aligned} \mathbb {E}\left[ W_n^2(\delta )\right]= & {} -f^x(t_\alpha (x))\frac{1}{h\phi _x(h) }\left( \mathbb {E}\beta _1K_1, h^{-1}\mathbb {E}[\beta _1^2 K_1] \right) \delta \\&+O(h^{\min (k_1,k_2)})+o\left( \Vert \delta \Vert \right) . \end{aligned}$$

It follows that

$$\begin{aligned} \mathbb {E}\left[ V_n(\delta )-A_n\right]= & {} -f^x(t_\alpha (x))\frac{1}{\phi _x(h) }\left( \begin{array}{ll} \mathbb {E}\left[ K_i\right] &{} \mathbb {E}\left[ K_ih^{-1}\beta _i\right] \\ \mathbb {E}\left[ K_ih^{-1}\beta _i\right] &{} \mathbb {E}\left[ h^{-2}\beta _i^2K_i\right] \\ \end{array} \right) \delta \\&+O(h^{\min (k_1,k_2)})+o\left( \Vert \delta \Vert \right) . \end{aligned}$$

Using the same ideas as in Rachdi et al. (2014) we show that

$$\begin{aligned} h^{-a}\mathbb {E}[\beta ^{-a}K_i^b]=\phi _x(h)\left( K^b(1)-\int _{-1}^{1} (u^aK^b(u))'\chi _x(u)du\right) +o(\phi _x(h)). \end{aligned}$$

Hence, we can conclude that

$$\begin{aligned} \sup _{\Vert \delta \Vert \le M} \Vert \mathbb {E}\left[ V_n(\delta )-A_n\right] +f^x(t_\alpha (x))D\delta + o(\Vert \delta \Vert )\Vert =O(h^{\min (k_1,k_2)}), \end{aligned}$$

which implies the result (3). \(\square \)

Proof of Lemma 4

It suffices to prove that

$$\begin{aligned} n\phi _x(h)\ var[c_1A_n^1+c_2A_n^2]\rightarrow C, \hbox { for } \left( \begin{array}{cc} c_1 \\ c_2 \\ \end{array} \right) \in \mathbb {R}^2, \end{aligned}$$

where \(A_n^1\) and \(A_n^2\) are defined in the Proof of Lemma 2 and C is an arbitrary constant. Indeed, by the stationarity property we write

$$\begin{aligned} n\phi _x(h)\ var[c_1A_n^1+c_2A_n^2]= & {} \frac{c_1^2}{\phi _x(h)} \ var[\Delta _1^1]+ \frac{c_2^2}{h^2\phi _x(h)} \ var[\Delta _1^2]\\&+\,2\frac{c_1c_2}{h\phi _x(h)}\ cov(\Delta _1^1,\Delta _1^2), \end{aligned}$$

and by some simple calculations we get

$$\begin{aligned} \frac{1}{\phi _x(h)}\ var[\Delta _1^1]\rightarrow & {} \alpha (1-\alpha )\left( K^2(1)- \int _{-1}^{1}(K^2(t))'\chi _x(t)dt\right) , \\ \frac{1}{h^2\phi _x(h)}\ var[\Delta _1^2]\rightarrow & {} \alpha (1-\alpha )\left( K^2(1)-\int _{-1}^{1}(t^2K^2(t))'\chi _x(t)dt\right) , \end{aligned}$$

and

$$\begin{aligned} \frac{c_1c_2}{h\phi _x(h)}\ cov(\Delta _1^1,\Delta _1^2)\rightarrow \alpha (1-\alpha )\left( K^2(1)-\int _{-1}^{1}(tK^2(t))'\chi _x(t)dt\right) , \end{aligned}$$

which yields to the proof of this lemma. \(\square \)

Proof of Lemma 5

The proof is based on the same arguments as in the Proof of Lemma 3. Precisely, it is based on the following two results

$$\begin{aligned}&\sup _{\Vert \delta \Vert \le M} \Vert \mathbb {E}\left[ V_n'(\delta )-A_n'\right] +f^x(t_\alpha (x))D\delta \Vert \nonumber \\&\quad =O \left( \sqrt{n\phi _x(h)}h^{\min (k_1,k_2)}\right) =o(1), \end{aligned}$$
(5)

and

$$\begin{aligned} \sup _{\Vert \delta \Vert \le M} \Vert V_n(\delta )-A_n-\mathbb {E}\left[ V_n(\delta )-A_n\right] \Vert =o_{p}\left( 1\right) . \end{aligned}$$
(6)

For (5), we write

$$\begin{aligned} V_n'(\delta )-A_n'= \sqrt{n\phi _x(h)}\left( \begin{array}{c} W_n^{1'}(\delta ) \\ W_n^{2'}(\delta ) \\ \end{array} \right) , \end{aligned}$$

where

$$\begin{aligned} W_n^{1'}(\delta )=\frac{1}{n\phi _x(h)}\sum _{i=1}^n\left( \Psi _\alpha (\delta )-\Psi _\alpha (\delta _0)\right) K_i, \end{aligned}$$

and

$$\begin{aligned} W_n^{2'}(\delta )=\frac{1}{nh\phi _x(h)}\sum _{i=1}^n\left( \Psi _\alpha (\delta )-\Psi _\alpha (\delta _0)\right) \beta _iK_i. \end{aligned}$$

Therefore

$$\begin{aligned}&\mathbb {E}\left[ V_n'(\delta )-A_n'\right] \\&\quad = -f^x(t_\alpha (x))\frac{1}{\phi _x(h) }\left( \begin{array}{ll} \mathbb {E}\left[ K_i\right] &{} \mathbb {E}\left[ K_ih^{-1}\beta _i\right] \\ \mathbb {E}\left[ K_ih^{-1}\beta _i\right] &{} \mathbb {E}\left[ h^{-2}\beta _i^2K_i\right] \\ \end{array} \right) \delta +O(h^{\min (k_1,k_2)})+o\left( \Vert \delta \Vert \right) . \end{aligned}$$

Now, for the term (6), we keep notations of Lemma 3 with other choices of \(l_n\) and \(d_n\). Here, we set \(l_n=d_n^{-1}= O( 1/\log n)\) and we write

$$\begin{aligned}&\sup _{\Vert \delta \Vert \le M} \Vert V_n'(\delta )-A_n'-\mathbb {E}\left[ V_n'(\delta )-A_n'\right] \Vert \\&\quad \le \sup _{\Vert \delta \Vert \le M} \Vert V_n(\delta )-V_n(\delta _j)\Vert \\&\qquad +\, \sup _{\Vert \delta \Vert \le M}\Vert V_n'(\delta _j)-A_n'-\mathbb {E}\left[ V_n'(\delta _j)-A_n'\right] \Vert \\&\qquad + \,\sup _{\Vert \delta \Vert \le M}\Vert \mathbb {E}\left[ V_n'(\delta )-V_n'(\delta _j)\right] . \end{aligned}$$

Once again, we write

$$\begin{aligned} \sup _{\Vert \delta \Vert \le M} \Vert V_n'(\delta )-V_n'(\delta _j)\Vert \le \frac{\sqrt{n\phi _x(h)}}{n\phi _x(h)}\sum _i Z_i, \end{aligned}$$

where

$$\begin{aligned} Z_i= \sup _{\Vert \delta \Vert \le M}\mathbb {1}_{\left[ \left| Y_i-\left( \frac{1}{\sqrt{n\phi _x(h)}}c_j+a\right) -\left( \frac{1}{h\sqrt{n\phi _x(h)}}d_j+d\right) \beta _i\right| \le C\frac{l_n}{\sqrt{n\phi _x(h)}}\right] }\left\| \left( \begin{array}{c} 1 \\ h^{-1}\beta _i \\ \end{array} \right) \right\| K_i . \end{aligned}$$

It is clear that

$$\begin{aligned} \mathbb {E}[Z_i]=O( n^{-1/2}l_n\sqrt{\phi _x(h)}) \quad \text{ and } \quad \ var[Z_i]=O(n^{-1/2}l_n\sqrt{\phi _x(h)}). \end{aligned}$$

Thus

$$\begin{aligned} \sup _{\Vert \delta \Vert \le M} \Vert V_n'(\delta )-V_n'(\delta _j)\Vert =o_{p}\left( 1\right) . \end{aligned}$$
(7)

Concerning the last term we have

$$\begin{aligned} \sup _{\Vert \delta \Vert \le M}\Vert \mathbb {E}\left[ V_n'(\delta )-V_n'(\delta _j)\right] \le Cl_n=o(1). \end{aligned}$$
(8)

Now, we treat the second term. To do that we write

$$\begin{aligned} V_n'(\delta _j)-A_n'-\mathbb {E}\left[ V_n'(\delta _j)-A_n'\right] = \left( \begin{array}{c} \sqrt{n\phi _x(h)} U_n^1(\delta _j) \\ \sqrt{n\phi _x(h)} U_n^2(\delta _j) \\ \end{array} \right) , \end{aligned}$$

where

$$\begin{aligned} U_n^1(\delta _j)=\frac{1}{n\phi _x(h)}\sum _{i=1}^n\Gamma ^{1'}_i \hbox { and } U_n^2(\delta _j)=\frac{1}{nh\phi _x(h)}\sum _{i=1}^n\Gamma ^{2'}_i, \end{aligned}$$

with

$$\begin{aligned} \Gamma ^{1'}_i=\left( \Psi _\alpha (\delta _j)-\Psi _\alpha (\delta _0)\right) K_i-\mathbb {E}\left[ \left( \Psi _\alpha (\delta _j)-\Psi _\alpha (\delta _0)\right) K_i \right] , \end{aligned}$$

and

$$\begin{aligned} \Gamma ^{2'}_i= \left( \Psi _\alpha (\delta _j)-\Psi _\alpha (\delta _0)\right) \beta _iK_i-\mathbb {E}\left[ \left( \Psi _\alpha (\delta _j)-\Psi _\alpha (\delta _0)\right) \beta _iK_i\right] . \end{aligned}$$

It is clear that

$$\begin{aligned} \ var\left[ \Gamma ^{1'}_i\right] =O(n^{-1/2}\sqrt{\phi _x(h)}) \quad \text{ and }\quad \ var\left[ \Gamma ^{2'}_i\right] =O(h^2n^{-1/2}\sqrt{\phi _x(h)}) . \end{aligned}$$

It follows that

$$\begin{aligned} \displaystyle \ var| \sqrt{n\phi _x(h)}\left( U_n^1(\delta _j)-\mathbb {E}\left[ U_n^1(\delta _j)\right] \right) =O\left( \frac{1 }{\sqrt{n\phi _x(h)}}\right) , \end{aligned}$$
(9)

and

$$\begin{aligned} \displaystyle \ var| \sqrt{n\phi _x(h)}\left( U_n^2(\delta _j)-\mathbb {E}\left[ U_n^2(\delta _j)\right] \right) =O\left( \frac{1 }{\sqrt{n\phi _x(h)}}\right) . \end{aligned}$$
(10)

Thus, the proof of this lemma is a consequence of the Assumption (H5) and (7)–(10). \(\square \)

Proof of Corollary 1

Since \(\Vert \delta _n'\Vert \le M\) and \(V_n'(\delta _n')=0\) then, from Lemma 5, we have

$$\begin{aligned} f^x(t_\alpha (x))D\delta _n'=A_n'+o_p(1), \end{aligned}$$

which implies that

$$\begin{aligned} \delta _n'=\frac{1}{f^x(t_\alpha (x))}D^{-1}A_n'+ o_p(1). \end{aligned}$$

Now, it suffices to replace \(A_n'\) and \(D^{-1}\) by their expressions to achieve the proof of this corollary. \(\square \)

Proof of Lemma 6

We use a Liapounov’s Theorem (see Loève 1963, p. 275). In the first step we consider the asymptotic behavior of the variance term

$$\begin{aligned} n\phi _x(h)\ var\left[ \widehat{\Phi }(x)\right] . \end{aligned}$$

From Lemma 4, we have

$$\begin{aligned} n\phi _x(h)\ var\left[ \widehat{\Phi }(x)\right] \rightarrow \alpha (1-\alpha ) a_3^2D_1-2a_2a_3D_2+a_2^2D_3 \hbox { as } n\rightarrow \infty . \end{aligned}$$
(11)

In the second step we apply the Liapounov’s theorem on

$$\begin{aligned} L_i=\frac{1}{n\phi _x(h)}\left( a_3K_i-a_2h^{-1}\beta _iK_i\left( \mathbb {1}_{ \left[ Y_i\le a+b\beta _1\right] }-\alpha \right) \right) . \end{aligned}$$

So, the asymptotic normality, in this lemma, is based on the following result

$$\begin{aligned} \frac{\sum _{i=1}^n\mathbb {E}\left[ |L_i-\mathbb {E}\left[ L_i\right] |^{2+\delta } \right] }{\left( \ var\left( \sum _{i=1}^nL_i\right) \right) ^{(2+\delta )/2}} \rightarrow 0 \hbox { as } n\rightarrow \infty , \quad \hbox {for some } \delta >0. \end{aligned}$$
(12)

From (11), it is clear that

$$\begin{aligned} n\phi _x(h)\ var \left( \sum _{i=1}^nL_i\right) \rightarrow \left[ f^x(t_\alpha (x))(a_1a_3-a_2^2)\sigma (x)\right] ^2, \hbox { as } n \rightarrow \infty . \end{aligned}$$

Therefore, to conclude the proof, it is enough to show that, after normalization, the numerator in (12) converges to 0. Since the observations are independent and identically distributed, by using the \(C_r\)-inequality (see Loève 1963, p. 155), we get

$$\begin{aligned}&(n\phi (h))^{(2+\delta )/2} \sum _{i=1}^n \mathbb {E}\left[ \Big |L_i-\mathbb {E}\left[ L_i\right] \Big |^{2+\delta }\right] \nonumber \\&\quad \le 2^{1+\delta }n\left( n\phi (h)\right) ^{(2+\delta )/2} \left\{ \mathbb {E}\left[ |L_1|^{2+\delta }\right] + |\mathbb {E}\left[ L_1\right] |^{2+\delta }\right\} \nonumber \\&\quad =:M_1+M_2. \end{aligned}$$

Hence,

$$\begin{aligned} M_1= & {} 2^{1+\delta }n^{-\delta /2}(\phi _x(h))^{-1-\delta /2}\mathbb {E}\left[ \left( a_3K_1-Ca_2h^{-1}\beta _1K_1\right) ^{2+\delta }\left| \mathbb {1}_ {\left[ Y_1\le a+b\beta _1\right] }-\alpha \right| ^{2+\delta }\right] \\\le & {} 2^{1+\delta }(n \phi _x(h))^{-\delta /2} \left( \mathbb {E}\left[ \left( a_3K_1-a_2h^{-1}\beta _1K_1\right) ^{2+\delta }\right] /\phi _x(h)\right) \rightarrow 0\hbox { as } n\rightarrow \infty . \end{aligned}$$

Similarly

$$\begin{aligned} M_2= & {} 2^{1+\delta }n^{-\delta /2}\left( \phi _x(h)\right) ^{(2+\delta )/2} \phi _x^{-2-\delta }(h)\mathbb {E}^{2+\delta }\left[ \left( a_3K_1-a_2h^{-1}\beta _1K_1\right) \left| \mathbb {1}_{\left[ Y\le a+b\beta _1\right] }-\alpha \right| \right] \\\le & {} 2^{1+\delta }n^{-\delta /2}\left( \phi _x(h)\right) ^{(2+\delta )/2}\rightarrow 0 \hbox { as } n\rightarrow \infty , \end{aligned}$$

which concludes this proof. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Awadhi, F.A., Kaid, Z., Laksaci, A. et al. Functional data analysis: local linear estimation of the \(L_1\)-conditional quantiles. Stat Methods Appl 28, 217–240 (2019). https://doi.org/10.1007/s10260-018-00447-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10260-018-00447-5

Keywords

Mathematics Subject Classification

Navigation