Skip to main content
Log in

The median of a jittered Poisson distribution

  • Published:
Metrika Aims and scope Submit manuscript

Abstract

Let \(N_\lambda \) and U be two independent random variables respectively distributed as a Poisson distribution with parameter \(\lambda >0\) and a uniform distribution on (0, 1). This paper establishes that the median, say M, of \(N_\lambda +U\) is close to \(\lambda +1/3\) and more precisely that \(M-\lambda -1/3=o(\lambda ^{-1})\) as \(\lambda \rightarrow \infty \). This result is used to construct a very simple robust estimator of \(\lambda \) which is consistent and asymptotically normal. Compared to known robust estimates, this one can still be used with large datasets (\(n\simeq 10^9\)).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

Download references

Acknowledgements

The authors are grateful to reviewers for their suggestions and comments which improved a previous version of this paper. In particular, the authors thank the reviewers for reexpressing a previous version of Remark 1. They are also sincerely grateful to H. Elsaied and R. Fried for discussions and for sharing the R code implementing the Tukey’s modified M-estimator. The research of J.-F. Coeurjollly and J. Rousseau Trépanier is supported by the Natural Sciences and Engineering Research Council of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-François Coeurjolly.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Appendix gathers technical lemmas, used in the proof of Proposition 1.

Lemma 1

Let \(k\in \mathbb {R}\), \(x\in [0,1)\) and \(r_n(x,k) = k/(n+x)\). Then the sequence \(w_n(x,k)\) reads as follows:

  1. (i)

    If \(x+r_n(x,k) \in [-1/3,2/3)\)

    $$\begin{aligned} w_n(x,k)= \mathrm {P}\left( N_{n+x}\le n \right) +\left( x-\frac{2}{3}+\frac{k}{n+x}\right) \mathrm {P}\left( N_{n+x}=n\right) . \end{aligned}$$
    (14)
  2. (ii)

    If \(x+r_n(x,k)\in [2/3,5/3)\)

    $$\begin{aligned} w_n(x,k)= \mathrm {P}\left( N_{n+x}\le n\right) +\left( x-\frac{2}{3}+\frac{k}{n+x}\right) \mathrm {P}(N_{n+x}=n+1). \end{aligned}$$
    (15)

Let \(k\in \mathbb {R}\), then for n sufficiently large, if \(x\in [0,2/3)\) or \(x=2/3\) and \(k<0\), then \(w_n(x,k)\) reads as in (14). In the same way, if \(x\in (2/3,1)\) or \(x=2/3\) and \(k\ge 0\), then \(w_n(x,k)\) reads as in (15). The proof of Lemma 1 is omitted as it derives easily from (5).

Lemma 2

Let \(k\in \mathbb {R}\), \(x\in [0,1)\) and \(r_n(x,k) = k/(n+x)\). Let \(\varDelta _n(x,k)\) be given by

$$\begin{aligned} \varDelta _n(x,k) = \frac{(n+1)!}{g_{n+1}(n+1+x)} \bigg ( w_{n+1}(x,k) - w_{n}(x,k) \bigg ). \end{aligned}$$

There exists \(n_0 \in \mathbb {N}\) such that for all \(n\ge n_0\), we have the two following cases:

  1. (i)

    If \(x+r_{n}(x,k) \in [-1/3,2/3)\)

    $$\begin{aligned} \varDelta _n(x,k) =&\;c_n(0,x)-\int _0^1 c_n(v,x)\mathrm {d}v + \left( x-\frac{2}{3} \right) \left( 1-c_n(0,x) \frac{n+1}{n+x}\right) \nonumber \\&+ r_{n+1}(x,k)- \frac{n+1}{n+x} c_n(0,x)r_n(x,k) \end{aligned}$$
    (16)

    where \(c_n(\cdot ,x):[0,1]\rightarrow \mathbb {R}\) is defined by

    $$\begin{aligned} c_n(v,x)= \left( \frac{n+v+x}{n+1+x} \right) ^{n+1} \exp (1-v). \end{aligned}$$
  2. (ii)

    If \(x+r_{n}(x,k) \in [2/3,5/3)\)

    $$\begin{aligned} \varDelta _n(x,k) =&\,c_n(0,x) -\int _0^1 c_n(v,x)\mathrm {d}v +\left( x-\frac{2}{3} \right) \left( \frac{n+1+x}{n+2}-c_n(0,x) \right) \nonumber \\&+ \frac{n+1+x}{n+2}r_{n+1}(x,k)- c_n(0,x)r_n(x,k). \end{aligned}$$
    (17)

Proof

  1. (i)

    Using the Poisson-Gamma relation \(\mathrm {P}(N_\lambda \le n)=\frac{1}{n!}\int _\lambda ^\infty g_n(u)\mathrm {d}u\) with \(g_n(u)=\mathrm {e}^{-u}u^n\) and Lemma 1 (i), we can rearrange the difference \(w_{n+1}(x,k)-w_n(x,k)\) as

    $$\begin{aligned} w_{n+1}(x,k)-w_n(x,k)&=\frac{1}{(n+1)!}\int _{n+x}^{n+1+x}-g_{n+1}(u)du+\frac{g_{n+1}(n+x)}{(n+1)!}\\&\qquad +\left( x-\frac{2}{3}+r_{n+1}(x,k)\right) \mathrm {P}\left( N_{n+1+x}=n+1\right) \\&\qquad -\left( x-\frac{2}{3}+r_n(x,k)\right) \mathrm {P}\left( N_{n+x}=n\right) , \end{aligned}$$

    which leads to the result after little algebra by noticing that

    $$\begin{aligned} \mathrm {P}(N_{n+x}=n)=\frac{(n+1)(n+x)^n\mathrm {e}^{-(n+x)}}{(n+1)!}=\frac{(n+1)g_n(n+x)}{(n+1)!}. \end{aligned}$$
  2. (ii)

    Using the Poisson-Gamma relation and Lemma 1 (ii), we can rearrange the difference \(w_{n+1}(x,k)-w_n(x,k)\) as

    $$\begin{aligned} w_{n+1}(x,k)-w_n(x,k) =&\,\frac{1}{(n+1)!}\int _{n+1+x}^{\infty }\mathrm {e}^{-u}u^{n+1}du\\&-\frac{1}{(n+1)!}\int _{n+x}^{\infty }\mathrm {e}^{-u}u^{n+1}du\\&+\left( x-\frac{2}{3}+r_{n+1}(x,k)\right) \mathrm {P}\left( N_{n+1+x}=n+2\right) \\&-\left( x-\frac{2}{3}+r_n(x,k)\right) \mathrm {P}\left( N_{n+x}=n+1\right) , \end{aligned}$$

    which leads to the result after little algebra by noticing that

    $$\begin{aligned} \mathrm {P}(N_{n+1+x}=n+2)=\frac{1}{(n+1)!}g_{n+1}(n+1+x)\frac{n+1+x}{(n+2)} \end{aligned}$$

    and

    $$\begin{aligned} \mathrm {P}(N_{n+x}=n+1)=\frac{1}{(n+1)!}g_{n+1}(n+1+x)c_n(0,x). \end{aligned}$$

\(\square \)

Lemma 3

Let \(k\in \mathbb {R}\), \(x\in [0,1)\) and \(r_n(x,k) = k/(n+x)\), for any \(k \in \mathbb {R}\) and \(x\in [0,1)\), then for n sufficiently large we have

$$\begin{aligned} \varDelta _n(x,k) = \frac{3}{2(n+1+x)^2} \big ( {\mathcal {H}}(x) - k \big ) \; + \; o\left( \frac{1}{n^2}\right) \end{aligned}$$

where \({\mathcal {H}}\) is the function given by (7).

Proof

Let \(k\in \mathbb {R}\), then for any \(x\in [0,1)\), there exists \(n_0\in \mathbb {N}\) such that for \(n\ge n_0\), either (i) \(x+r_{n}(x,k)\in [-1/3,2/3)\) or (ii) \(x+r_n(x,k)\in [2/3,5/3)\). In the sequel, we consider both cases and expand the expression of \(\varDelta _n(x,k)\) given by Lemma 2. The following expansions extensively make use of auxiliary results gathered in Lemma 4.

  1. (i)

    Case \(x+r_{n}(x,k)\in [-1/3,2/3)\).

    $$\begin{aligned} \varDelta _n(x,k)&=\frac{1}{n+1+x}\left( -\frac{x}{2}+\frac{1}{6}\right) +\frac{1}{(n+1+x)^2}\left( -\frac{x^2}{6}-\frac{x}{24}+\frac{7}{120}\right) \\&\qquad +\frac{1}{n+1+x}\left( x-\frac{1}{2}\right) +\frac{1}{(n+1+x)^2}\left( \frac{x^2}{2}-\frac{5}{24}\right) \\&\qquad +\left( x-\frac{2}{3}\right) \left[ \frac{-1/2}{n+1+x}+\frac{1}{(n+1+x)^2}\left( \frac{x^2}{2}-\frac{x}{2}-\frac{7}{24}\right) \right] \\&\qquad -\frac{3k}{2}\frac{1}{(n+1+x)^2}+o\left( \frac{1}{n^2}\right) \\&=\frac{3}{2(n+1+x)^2}\left( \frac{x^2(x-1)}{3}+\frac{4}{135}-k\right) +o\left( \frac{1}{n^2}\right) \\&=\frac{3}{2(n+1+x)^2} \big ( {\mathcal {H}}(x) - k \big ) \; + \; o\left( \frac{1}{n^2}\right) . \end{aligned}$$
  2. (ii)

    Case \(x+r_{n}(x,k)\in [2/3,5/3)\).

    $$\begin{aligned} \varDelta _n(x,k)&=\frac{1}{n+1+x}\left( -\frac{x}{2}+\frac{1}{6}\right) +\frac{1}{(n+1+x)^2}\left( -\frac{x^2}{6}-\frac{x}{24}+\frac{7}{120}\right) \\&\qquad +\frac{1}{n+1+x}\left( x-\frac{1}{2}\right) +\frac{1}{(n+1+x)^2}\left( \frac{x^2}{2}-\frac{5}{24}\right) \\&\qquad +\left( x-\frac{2}{3}+r_{n+1}(x,k)\right) \left( \frac{n+1+x}{n+2}\right) \\&\qquad -\left( x-\frac{2}{3}+r_n(x,k)\right) c_n(0,x)\\&=\frac{1}{(n+1+x)^2}\left( \frac{x^3}{2}-2x^2+\frac{5x}{2}-\frac{43}{45}-\frac{3k}{2}\right) +o\left( \frac{1}{n^2}\right) \\&=\frac{3}{2(n+1+x)^2}\left( \frac{x^3}{3}-\frac{4x^2}{3}+\frac{5x}{3}-\frac{86}{135}-k\right) +o\left( \frac{1}{n^2}\right) \\&=\frac{3}{2(n+1+x)^2} \big ( {\mathcal {H}}(x) - k \big ) \; + \; o\left( \frac{1}{n^2}\right) . \end{aligned}$$

\(\square \)

Lemma 4

Let \(v,x \in [0,1]\), then we have the following expansions as \(n \rightarrow \infty \):

  1. (i)
    $$\begin{aligned} c_n(v,x)=&\,1+\frac{1}{n+1+x}\left( x(1-v)-\frac{(1-v)^2}{2}\right) \nonumber \\&+\frac{1}{(n+1+x)^2}\left( \frac{(1-v)^2}{2}(x^2+x)\right. \nonumber \\&\left. -(1-v)^3\left( \frac{x}{2}+\frac{1}{3}\right) +\frac{(1-v)^4}{8}\right) \nonumber \\&+o\left( \frac{1}{n^2}\right) . \end{aligned}$$
    (18)
  2. (ii)
    $$\begin{aligned}&c_n(0,x) =1+\frac{1}{n+1+x}\left( x-\frac{1}{2}\right) +\frac{1}{(n+1+x)^2}\left( \frac{x^2}{2}-\frac{5}{24}\right) +o\left( \frac{1}{n^2}\right) . \end{aligned}$$
    (19)
  3. (iii)
    $$\begin{aligned} \int _0^1c_n(v,x)dv=&\,1+\frac{1}{n+1+x}\left( \frac{x}{2}-\frac{1}{6}\right) \nonumber \\&+\frac{1}{(n+1+x)^2}\left( \frac{x^2}{6}+\frac{x}{24}-\frac{7}{120}\right) +o\left( \frac{1}{n^2}\right) . \end{aligned}$$
    (20)
  4. (iv)
    $$\begin{aligned} 1-c_n(0,x)\frac{n+1}{n+x}= & {} \frac{-1/2}{n+1+x}+\frac{1}{(n+1+x)^2}\left[ \frac{x^2}{2}-\frac{x}{2}-\frac{7}{24}\right] \nonumber \\&+o\left( \frac{1}{n^2}\right) . \end{aligned}$$
    (21)
  5. (v)
    $$\begin{aligned} r_{n+1}(x,k)- \frac{n+1}{n+x} c_n(0,x)r_n(x,k)=\frac{-3k}{2}\frac{1}{(n+1+x)^2}+o\left( \frac{1}{n^2}\right) . \end{aligned}$$
    (22)
  6. (vi)
    $$\begin{aligned} \frac{n+1+x}{n+2}-c_n(0,x)= & {} \frac{1/2}{n+1+x} + \frac{1}{(n+1+x)^2} \left( \frac{x^2}{2}-2x -\frac{5}{24}\right) \nonumber \\&+o\left( \frac{1}{n^2} \right) . \end{aligned}$$
    (23)
  7. (vii)
    $$\begin{aligned} \frac{n+1+x}{n+2}r_{n+1}(x,k)- c_n(0,x)r_n(x,k) = \frac{-3k}{2}\frac{1}{(n+1+x)^2}+o\left( \frac{1}{n^2}\right) .\nonumber \\ \end{aligned}$$
    (24)

The proof which relies upon simple Taylor expansions, is omitted to save space. Details can be provided upon request from the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Coeurjolly, JF., Rousseau Trépanier, J. The median of a jittered Poisson distribution. Metrika 83, 837–851 (2020). https://doi.org/10.1007/s00184-020-00765-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00184-020-00765-3

Keywords

Navigation