Skip to main content
Log in

Median-based estimation of the intensity of a spatial point process

  • Published:
Annals of the Institute of Statistical Mathematics Aims and scope Submit manuscript

Abstract

This paper is concerned with a robust estimator of the intensity of a stationary spatial point process. The estimator corresponds to the median of a jittered sample of the number of points, computed from a tessellation of the observation domain. We show that this median-based estimator satisfies a Bahadur representation from which we deduce its consistency and asymptotic normality under mild assumptions on the spatial point process. Through a simulation study, we compare the new estimator, in particular, with the standard one counting the mean number of points per unit volume. The empirical study confirms the asymptotic properties established in the theoretical part and shows that the median-based estimator is more robust to outliers than standard procedures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Adell, J., Jodrá, P. (2005). The median of the Poisson distribution. Metrika, 61(3), 337–346.

  • Assunção, R., Guttorp, P. (1999). Robustness for inhomogeneous Poisson point processes. Annals of the Institute of Statistical Mathematics, 51, 657–678.

  • Baddeley, A., Turner, R. (2005). Spatstat: An R package for analyzing spatial point patterns. Journal of Statistical Software, 12, 1–42.

  • Baddeley, A., Turner, R., Møller, J., Hazelton, M. (2005). Residual analysis for spatial point processes (with discussion). Journal of the Royal Statistical Society: Series B (Statistical Methodology), 67(5), 617–666.

  • Berndt, S., Stoyan, D. (1997). Automatic determination of dendritic arm spacing in directionally solidified matters. International Journal of Materials Research (formerly Zeitschrift für Metallkunde), 88, 758–763.

  • Byth, K. (1982). On robust distance-based intensity estimators. Biometrics, 38(1), 127–135.

    Article  Google Scholar 

  • Clausel, M., Coeurjolly, J.-F., Lelong, J. (2015). Stein estimation of the intensity of a spatial homogeneous Poisson point process. Annals of Applied Probability (to appear).

  • Coeurjolly, J.-F., Lavancier, F. (2013). Residuals and goodness-of-fit tests for stationary marked Gibbs point processes. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 75(2), 247–276.

  • Coeurjolly, J.-F., Møller, J. (2014). Variational approach to estimate the intensity of spatial point processes. Bernoulli, 20(3), 1097–1125.

  • Daley, D. J., Vere-Jones, D. (2003). An introduction to the theory of point processes. Volume I: Elementary theory and methods (2nd ed.). New York: Springer.

  • David, H., Nagaraja, H. (2003). Order statistics (3rd ed.). Wiley, NJ: Hoboken.

  • Diggle, P. J. (2003). Statistical analysis of spatial point patterns (2nd ed.). London: Arnold.

    MATH  Google Scholar 

  • Ghosh, J. (1971). A new proof of the Bahadur representation of quantiles and an application. Annals of Mathematical Statistics, 42(6), 1957–1961.

    Article  MathSciNet  MATH  Google Scholar 

  • Guan, Y., Loh, J. M. (2007). A thinned block bootstrap procedure for modeling inhomogeneous spatial point patterns. Journal of the American Statistical Association, 102, 1377–1386.

  • Guan, Y., Sherman, M., Calvin, J. A. (2007). On asymptotic properties of the mark variogram estimator of a marked point process. Journal of Statistical Planning and Inference, 137(1), 148–161.

  • Guyon, X. (1991). Random fields on a network. New York: Springer.

    MATH  Google Scholar 

  • Heinrich, L., Prokešová, M. (2010). On estimating the asymptotic variance of stationary point processes. Methodology and Computing in Applied Probability, 12(3), 451–471.

  • Ibragimov, I. A., Linnik, Y. V. (1971). Independent and stationary sequences of random variables. Groningen: Wolters-Noordhoff.

  • Illian, J., Penttinen, A., Stoyan, H., Stoyan, D. (2008). Statistical analysis and modelling of spatial point patterns. Statistics in practice. Chichester: Wiley.

  • Karáczony, Z. (2006). A central limit theorem for mixing random fields. Miskolc Mathematical Notes, 7, 147–160.

    MathSciNet  Google Scholar 

  • Lavancier, F., Møller, J., Rubak, E. (2014). Determinantal point process models and statistical inference. Journal of the Royal Statistical Society: Series B. doi:10.1111/rssb.12096.

  • Ma, Y., Genton, M., Parzen, E. (2011). Asymptotic properties of sample quantiles of discrete distributions. Annals of the Institute of Statistical Mathematics, 63(2), 227–243.

  • Machado, J., Santos Silva, J. (2005). Quantiles for counts. Journal of the American Statistical Association, 100(472), 1226–1237.

  • Magnussen, S. (2012). Fixed-count density estimation with virtual plots. Spatial Statistics, 2, 33–46.

    Article  Google Scholar 

  • Møller, J. (1994). Lectures on random Voronoi tessellations. New York: Springer.

    Book  MATH  Google Scholar 

  • Møller, J., Waagepetersen, R. P. (2003). Statistical inference and simulation for spatial point processes. Boca Raton: Chapman and Hall/CRC.

  • Mrkvička, T., Molchanov, I. (2005). Optimisation of linear unbiased intensity estimators for point processes. Annals of the Institute of Statistical Mathematics, 57(1), 71–81.

  • Politis, D., Paparoditis, E., Romano, J. (1998). Large sample inference for irregularly spaced dependent observations based on subsampling. The Indian Journal of Statistics, Series A, 60(2), 274–292.

  • Prokešová, M., Jensen, E. (2013). Asymptotic Palm likelihood theory for stationary point processes. Annals of the Institute of Statistical Mathematics, 65(2), 387–412.

  • Redenbach, C., Särkkä, A., Sormani, M. (2015). Classification of points in superpositions of strauss and poisson processes. Spatial Statistics, 12, 81–95.

  • Rose, C., Smith, M. (1996). The multivariate normal distribution. Mathematica Journal, 6(1), 32–37.

  • Stevens, W. (1950). Fiducial limits of the parameter of a discontinuous distribution. Biometrika, 37(1–2), 117–129.

    Article  MathSciNet  MATH  Google Scholar 

  • Stoyan, D., Kendall, W. S., Mecke, J. (1995). Stochastic geometry and its applications (2nd ed.). Chichester: Wiley.

  • Van der Vaart, A. (2000). Asymptotic statistics (Vol. 3). Cambridge: Cambridge University Press.

    MATH  Google Scholar 

  • Waagepetersen, R., Guan, Y. (2009). Two-step estimation for inhomogeneous spatial point processes. Journal of the Royal Statistical Society: Series B, 71, 685–702.

  • Zhengyan, L., Chuanrong, L. (1996). Limit theory for mixing dependent random variables (Vol. 378). Dordrecht: Kluwer Academic.

Download references

Acknowledgments

The author would like to thank sincerely Michaela Prokešová for discussing the initial idea of this paper, Frédéric Lavancier for discussions on an earlier version of the manuscript and Jérôme Lelong for a careful reading. The author is very grateful to the associate editor and the referee in particular for pointing out interesting references, which enriched the simulation study. The research of the author is partially funded by Persyval-lab EA Oculo-Nimbus.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-François Coeurjolly.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Coeurjolly, JF. Median-based estimation of the intensity of a spatial point process. Ann Inst Stat Math 69, 303–331 (2017). https://doi.org/10.1007/s10463-015-0536-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10463-015-0536-7

Keywords

Navigation