Skip to main content
Log in

A residual-based multivariate constant correlation test

  • Published:
Metrika Aims and scope Submit manuscript

Abstract

We propose a new multivariate constant correlation test based on residuals. This test takes into account the whole correlation matrix instead of the considering merely marginal correlations between bivariate data series. In financial markets, it is unrealistic to assume that the marginal variances are constant. This motivates us to develop a constant correlation test which allows for non-constant marginal variances in multivariate time series. However, when the assumption of constant marginal variances is relaxed, it can be shown that the residual effect leads to nonstandard limit distributions of the test statistics based on residual terms. The critical values of the test statistics are not directly available and we use a bootstrap approximation to obtain the corresponding critical values for the test. We also derive the limit distribution of the test statistics based on residuals under the null hypothesis. Monte Carlo simulations show that the test has appealing size and power properties in finite samples. We also apply our test to the stock returns in Euro Stoxx 50 and integrate the test into a binary segmentation algorithm to detect multiple break points.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Andrews D (1991) Heteroskedasticity and autocorrelation consistent covariance matrix estimation. Econometrica 59(3):817–858

    Article  MathSciNet  MATH  Google Scholar 

  • Aue A, Hörmann S, Horváth L, Reimherr M (2009) Break detection in the covariance structure of multivariate time series models. Ann Stat 37(6B):4046–4087

    Article  MathSciNet  MATH  Google Scholar 

  • Bai J, Ng S (2005) Tests for skewness, kurtosis, and normality for time series data. J Bus Econ Stat 23(1):49–60

    Article  MathSciNet  Google Scholar 

  • Berens T, Weiß GN, Wied D (2015) Testing for structural breaks in correlations: does it improve value-at-risk forecasting? J Empir Finance 32(C):135–152

    Article  Google Scholar 

  • Brown RL, Durbin J, Evans JM (1975) Techniques for testing the constancy of regression relationships over time. J R Stat Soc Ser B (Methodol) 37(2):149–192

    MathSciNet  MATH  Google Scholar 

  • Carlstein E (1986) The use of subseries values for estimating the variance of a general statistic from a stationary sequence. Ann Stat 14(3):1171–1179

    Article  MathSciNet  MATH  Google Scholar 

  • Davidson J (1994) Stochastic Limit Theory, Advanced Texts in Econometrics. Oxford University Press, Oxford

    Book  Google Scholar 

  • Demetrescu M, Wied D (2018) Testing for constant correlaton of filtered series under structural change. Econ J, forthcoming. https://doi.org/10.1111/ectj.12116

  • Galeano P, Wied D (2014) Multiple break detection in the correlation structure of random variables. Comput Stat Data Anal 76(C):262–282

    Article  MathSciNet  Google Scholar 

  • Galeano P, Wied D (2017) Dating multiple change points in the correlation matrix. TEST Off J Span Soc Stat Oper Res 26(2):331–352

    MathSciNet  MATH  Google Scholar 

  • Guillén MF (2015) The global economic and financial crisis: a timeline. Unpublished manuscript

  • Hall P, Horowitz J (1996) Bootstrap critical values for tests based on generalized-method-of-moments estimators. Econometrica 64(4):891–916

    Article  MathSciNet  MATH  Google Scholar 

  • Hansen L (1982) Large sample properties of generalized method of moments estimators. Econometrica 50(4):1029–54

    Article  MathSciNet  MATH  Google Scholar 

  • Inoue A, Shintani M (2006) Bootstrapping GMM estimators for time series. J Econom 133(2):531–555

    Article  MathSciNet  MATH  Google Scholar 

  • Kiefer J (1959) K-sample analogues of the Kolmogorov–Smirnov and Cramér–V. Mises tests. Ann Math Stat 30(2):420–447

    Article  MATH  Google Scholar 

  • Lahiri SN (1999) Theoretical comparisons of block bootstrap methods. Ann Stat 27(1):386–404

    Article  MathSciNet  MATH  Google Scholar 

  • Lahiri SN (2003) Resampling Methods for Dependent Data, Springer Series in Statistics, 1st edn. Springer, New York

    Book  Google Scholar 

  • Pape K, Wied D, Galeano P (2016) Monitoring multivariate variance changes. J Empir Finance 39(PA):54–68

    Article  Google Scholar 

  • Ploberger W, Krämer W (1992) The CUSUM test with OLS residuals. Econometrica 60(2):271–285

    Article  MathSciNet  MATH  Google Scholar 

  • Politis DN, White H (2004) Automatic block-length selection for the dependent bootstrap. Econom Rev 23(1):53–70

    Article  MathSciNet  MATH  Google Scholar 

  • Wied D (2017) A nonparametric test for a constant correlation matrix. Econom Rev 36(10):1157–1172

    Article  MathSciNet  Google Scholar 

  • Wied D, Arnold M, Bissantz N, Ziggel D (2012a) A new fluctuation test for constant variances with applications to finance. Metrika 75(8):1111–1127

    Article  MathSciNet  MATH  Google Scholar 

  • Wied D, Krämer W, Dehling H (2012b) Testing for a change in correlation at an unknown point in time using an extended functional delta method. Econom Theory 28(03):570–589

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang X, Cheng G (2014) Bootstrapping high dimensional time series. ArXiv e-prints

  • Zhou Z (2013) Heteroscedasticity and autocorrelation robust structural change detection. J Am Stat Assoc 108(502):726–740

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

F. Duan gratefully acknowledges funding by Ruhr Graduate School in Economics (RGS Econ).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dominik Wied.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author (D. Wied) states that there is no conflict of interest concerning this paper.

Appendices

Proof

1.1 Proof of Proposition 1

To prove the convergence of the random vector \(\frac{1}{\sqrt{n}}\sum _{t=1}^{[ns]} vech( \hat{\varvec{Z}}_{t} \hat{\varvec{Z}}_{t}')\), we need to prove each element in this \(\frac{d(d-1)}{2}\) dimensional vector has such convergence, for \(1\le i<j\le d\):

$$\begin{aligned} \frac{1}{\sqrt{n}}\sum _{t=1}^{[ns]} \hat{Z}_{t,i}\hat{Z}_{t,j}= & {} \frac{1}{\sqrt{n}}\sum _{t=1}^{[ns]} Z_{t,i}Z_{t,j} + \frac{1}{\sqrt{n}} \sum _{t=1}^{[ns]} \frac{\partial z_{i}z_{j}}{\partial \varvec{z}}\Big |_{\varvec{z} = \varvec{Z}_t^*} \frac{\partial \varvec{Z}_t^*}{\partial \varvec{\theta }}\Big |_{\varvec{\theta }=\varvec{\theta }_{\lambda _0}^*} (\hat{\varvec{\theta }}_{\lambda _0}-\varvec{\theta }_{\lambda _0}) \\= & {} \frac{1}{\sqrt{n}}\sum _{t=1}^{[ns]} Z_{t,i}Z_{t,j} + \frac{1}{\sqrt{n}} \sum _{t=1}^{[ns]} \frac{\partial z_{i}z_{j}}{\partial \varvec{z}}\Big |_{\varvec{z} = \varvec{Z}_t} \frac{\partial \varvec{Z}_t}{\partial \varvec{\theta }}\Big |_{\varvec{\theta }=\varvec{\theta }_{\lambda _0}} (\hat{\varvec{\theta }}_{\lambda _0} -\varvec{\theta }_{\lambda _0})\\&+ \,\frac{1}{\sqrt{n}}\sum _{t=1}^{[ns]} \Bigg (\frac{\partial z_{i}z_{j}}{\partial \varvec{z}}\Big |_{\varvec{z} = \varvec{Z}_t^*} \frac{\partial \varvec{Z}_t^*}{\partial \varvec{\theta }}\Big |_{\varvec{\theta }=\varvec{\theta }_{\lambda _0}^*}-\frac{\partial z_{i}z_{j}}{\partial \varvec{z}}\Big |_{\varvec{z} = \varvec{Z}_t} \frac{\partial \varvec{Z}_t}{\partial \varvec{\theta }}\Big |_{\varvec{\theta }=\varvec{\theta }_{\lambda _0}}\Bigg ) \\&(\hat{\varvec{\theta }}_{\lambda _0}-\varvec{\theta }_{\lambda _0}) \end{aligned}$$

Note that \(\varvec{\theta }_{\lambda _0}\) is true parameter vector with length 4d, the estimator \(\varvec{\theta }_{\lambda _0}^*\) is the convex combination of \(\varvec{\theta }_{\lambda _0}\) and \(\hat{\varvec{\theta }}_{\lambda _0}\) such that it lies in the neighborhood \(\Phi _n\) defined in Assumption 2 (as \(\hat{\varvec{\theta }}_{\lambda _0}-\varvec{\theta }_{\lambda _0} = O_p(1/\sqrt{n})\), so \(\varvec{\theta }_{\lambda _0}^*\) lies in \(\sqrt{n}\)-neighborhood of \(\varvec{\theta }_{\lambda _0}\) hence in \(\Phi _n\)). The first equal sign is given by expansion with mean value theorem around \(\varvec{\theta }_{\lambda _0}\), and the third term in the second line vanishes asymptotically as

$$\begin{aligned}&\left\| \frac{1}{\sqrt{n}}\sum _{t=1}^{[ns]} \Big (\frac{\partial z_{i}z_{j}}{\partial \varvec{z}}\Big |_{\varvec{z} = \varvec{Z}_t^*} \frac{\partial \varvec{Z}_t^*}{\partial \varvec{\theta }}\Big |_{\varvec{\theta }=\varvec{\theta }_{\lambda _0}^*}-\frac{\partial z_{i}z_{j}}{\partial \varvec{z}}\Big |_{\varvec{z} = \varvec{Z}_t} \frac{\partial \varvec{Z}_t}{\partial \varvec{\theta }}\Big |_{\varvec{\theta }=\varvec{\theta }_{\lambda _0}} \Big ) (\hat{\varvec{\theta }}_{\lambda _0}-\varvec{\theta }_{\lambda _0}) \right\| \\&\quad \le \Vert \sqrt{n}(\hat{\varvec{\theta }}_{\lambda _0} -\varvec{\theta }_{\lambda _0}) \left\| \sup _{\varvec{\theta }_{\lambda _0}^*,t=1,\ldots ,n} \Vert \frac{\partial z_{i}z_{j}}{\partial \varvec{z}}\Big |_{\varvec{z} = \varvec{Z}_t^*} \frac{\partial \varvec{Z}_t^*}{\partial \varvec{\theta }}\Big |_{\varvec{\theta }=\varvec{\theta }_{\lambda _0}^*}-\frac{\partial z_{i}z_{j}}{\partial \varvec{z}}\Big |_{\varvec{z} = \varvec{Z}_t} \frac{\partial \varvec{Z}_t}{\partial \varvec{\theta }}\Big |_{\varvec{\theta }=\varvec{\theta }_{\lambda _0}}\right\| \\&\quad \rightarrow _p 0 \end{aligned}$$

The last line is guaranteed by Assumption 2. By applying Lemma 18.7 in Davidson (1994), p. 285, for \(1\le i <j \le d\), we have

$$\begin{aligned} \frac{1}{\sqrt{n}}\sum _{t=1}^{[ns]} \Big (\frac{\partial z_{i}z_{j}}{\partial \varvec{z}}\Big |_{\varvec{z} = \varvec{Z}_t^*} \frac{\partial \varvec{Z}_t^*}{\partial \varvec{\theta }}\Big |_{\varvec{\theta }=\varvec{\theta }_{\lambda _0}^*}-\frac{\partial z_{i}z_{j}}{\partial \varvec{z}}\Big |_{\varvec{z} = \varvec{Z}_t} \frac{\partial \varvec{Z}_t}{\partial \varvec{\theta }}\Big |_{\varvec{\theta }=\varvec{\theta }_{\lambda _0}} \Big ) (\hat{\varvec{\theta }}_{\lambda _0}-\varvec{\theta }_{\lambda _0}) \rightarrow _p 0 \end{aligned}$$

Note that, from Assumption 1, we have

$$\begin{aligned} \sqrt{n}(\hat{\varvec{\theta }}_{\lambda _0}-\varvec{\theta }_{\lambda _0}) \rightarrow _d \Sigma _{\lambda _0}^{1/2}\varvec{\Theta }_{\lambda _0}(1) \end{aligned}$$

In addition, once Assumption 1 is valid, it holds that the sample (cross-) moments of \(\varvec{Z}_{t}\) converges to its theoretical counterparts, respectively, in the subsamples separated by the change point \(\lambda _0\). As a consequence, the asymptotic property of the essential part of residual effect follows

$$\begin{aligned} \frac{1}{n}\sum _{t=1}^{[ns]}\frac{\partial vech(\varvec{z}\varvec{z}')}{\partial \varvec{z}}\Big |_{\varvec{z} = \varvec{Z}_t} \frac{\partial \varvec{Z}_t}{\partial \varvec{\theta }}\Big |_{\varvec{\theta }=\varvec{\theta }_{\lambda _0}} \Rightarrow \varvec{\tau }_{\lambda _0}(s) \end{aligned}$$

where the asymptotic residual effect part is

$$\begin{aligned} \varvec{\tau }_{\lambda _0}(s) = \begin{pmatrix} \varvec{\tau }_{\varvec{\theta }_{0,1}}(s) \bar{D}_{t,\lambda _0} + \varvec{\tau }_{\varvec{\theta }_{0,1}}(\lambda _0) D_{t,\lambda _0}&(\varvec{\tau }_{\varvec{\theta }_{0,2}}(s)-\varvec{\tau }_{\varvec{\theta }_{0,2}}(\lambda _0))D_{t,\lambda _0} \end{pmatrix} \end{aligned}$$

Following the elementwise convergence derived above, together with continuous mapping theorem and Assumptions 12, we have

$$\begin{aligned} \begin{array}{ll} &{}\frac{1}{\sqrt{n}}\displaystyle \sum \limits _{t=1}^{[ns]} (vech(\hat{\varvec{Z}}_{t}\hat{\varvec{Z}}_{t}')- \mathbb {E}(vech(\varvec{Z}_{t}\varvec{Z}_{t}'))) \\ &{}\quad = \frac{1}{\sqrt{n}}\displaystyle \sum \limits _{t=1}^{[ns]} (vech(\varvec{Z}_{t}\varvec{Z}_{t}')- \mathbb {E}(vech(\varvec{Z}_{t}\varvec{Z}_{t}'))) + \frac{1}{\sqrt{n}} \displaystyle \sum \limits _{t=1}^{[ns]} \frac{\partial vech(\varvec{z}\varvec{z}')}{\partial \varvec{z}}\Big |_{\varvec{z} = \varvec{Z}_t} \frac{\partial \varvec{Z}_t}{\partial \varvec{\theta }}\Big |_{\varvec{\theta }=\varvec{\theta }_{\lambda _0}} (\hat{\varvec{\theta }}_{\lambda _0}-\varvec{\theta }_{\lambda _0})\\ &{}\qquad + \frac{1}{\sqrt{n}}\displaystyle \sum \limits _{t=1}^{[ns]} \Bigg (\frac{\partial vech(\varvec{z}\varvec{z}')}{\partial \varvec{z}}\Big |_{\varvec{z} = \varvec{Z}_t^*} \frac{\partial \varvec{Z}_t^*}{\partial \varvec{\theta }}\Big |_{\varvec{\theta }=\varvec{\theta }_{\lambda _0}^*}-\frac{\partial vech(\varvec{z}\varvec{z}')}{\partial \varvec{z}}\Big |_{\varvec{z} = \varvec{Z}_t} \frac{\partial \varvec{Z}_t}{\partial \varvec{\theta }}\Big |_{\varvec{\theta }=\varvec{\theta }_{\lambda _0}}\Bigg ) (\hat{\varvec{\theta }}_{\lambda _0}-\varvec{\theta }_{\lambda _0}) \\ &{}\quad \Rightarrow \Omega ^{1/2}\varvec{\Gamma }(s) + \varvec{\tau }_{\lambda _0}(s)\Sigma _{\lambda _0}^{1/2}\varvec{\Theta }_{\lambda _0}(1) \end{array} \end{aligned}$$

1.2 Proof of Proposition 2

Following Proposition 1, we have

$$\begin{aligned} \begin{array}{cl} &{} \frac{j}{\sqrt{n}}(\hat{\varvec{S}}_j-\hat{\varvec{S}}_n) \\ &{}\quad = \frac{j}{\sqrt{n}} \left( \frac{1}{j} \displaystyle \sum \limits _{t=1}^j vech( \hat{\varvec{Z}}_{t} \hat{\varvec{Z}}_{t}' ) - \frac{1}{n}\displaystyle \sum \limits _{t=1}^n vech(\hat{\varvec{Z}}_{t} \hat{\varvec{Z}}_{t}')\right) \\ &{}\quad = \frac{1}{\sqrt{n}} \displaystyle \sum \limits _{t=1}^j [ vech( \hat{\varvec{Z}}_{t} \hat{\varvec{Z}}_{t}' ) -\mathbb {E}(vech(\varvec{Z}_{t} \varvec{Z}_{t}')) ] - \frac{j}{n} \frac{1}{\sqrt{n}}\displaystyle \sum \limits _{t=1}^n [vech( \hat{\varvec{Z}}_{t} \hat{\varvec{Z}}_{t}' ) - \\ &{} \mathbb {E}(vech(\varvec{Z}_{t} \varvec{Z}_{t}')) ] \\ &{}\quad \Rightarrow \Omega ^{1/2}\varvec{\Gamma }(s) + \varvec{\tau }_{\lambda _0}(s)\Sigma _{\lambda _0}^{1/2}\varvec{\Theta }_{\lambda _0}(1) - \frac{j}{n} [\Omega ^{1/2}\varvec{\Gamma }(1)+\varvec{\tau }_{\lambda _0}(1)\Sigma _{\lambda _0}^{1/2}\varvec{\Theta }_{\lambda _0}(1)] \\ &{}\quad :=\Omega ^{1/2} (\hat{\varvec{\Gamma }}(s) - s\hat{\varvec{\Gamma }}(1)) \end{array} \end{aligned}$$

where \(\hat{\varvec{\Gamma }}(s) = \varvec{\Gamma }(s) + \Omega ^{-1/2}\varvec{\tau }_{\lambda _0}(s)\Sigma _{\lambda _0}^{1/2}\varvec{\Theta }_{\lambda _0}(1)\) and \(j=[ns]\). The conclusion of this proposition follows with the continuous mapping theorem together with Assumption 3.

Tables

See Tables 3, 4 and 5.

Table 3 Empirical size of the multivariate constant correlation test for serially independent random variables with 1000 Monte Carlo simulations
Table 4 Empirical size of the multivariate constant correlation test for serially dependent random variables with 1000 Monte Carlo simulations
Table 5 Empirical power of the multivariate constant correlation test for both serially independent and serially dependent random variables with 1000 Monte Carlo simulations

Figures

See Figs. 8 and 9.

Fig. 8
figure 8

ACF plots of cross products of residuals \(\hat{Z}_{t,i}\hat{Z}_{t,j}, \forall i\ne j\) for stocks, and A, B, D, E, ING, INT, L, S are abbreviations for ARCELOR, BASF, DAIMLER, ENEL, INGGROEP, INTESA, LVMH, SANOFI, respectively

Fig. 9
figure 9

Histogram of asymptotic distribution of test statistics \(Q_n\) approximated by block bootstrap procedure with \(B=10{,}999\) bootstrap replications and block length \(T^{1/3}\) (the blue vertical line indicates the 0.95 quantile) (color figure online)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duan, F., Wied, D. A residual-based multivariate constant correlation test. Metrika 81, 653–687 (2018). https://doi.org/10.1007/s00184-018-0675-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00184-018-0675-y

Keywords

JEL Classification

Navigation