Skip to main content
Log in

Shape measures based on the convex transform order

  • Published:
Metrika Aims and scope Submit manuscript

Abstract

Three functional measures of the shape of univariate distributions are proposed which are consistent with respect to the convex transform order. The first two are weighted tail indices that characterize location-scale families of distributions, whilst the third is a skewness measure. Properties of the new measures are established for various classes of symmetric and asymmetric distributions, and the generalized Pareto distribution characterized in terms of them. Kernel density based estimation of the measures is also considered, and the use of the estimated functionals is illustrated in the analysis of two real data sets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Arnold BC, Groeneveld RA (1995) Measuring skewness with respect to the mode. Am Stat 49:34–38

    MathSciNet  Google Scholar 

  • Arriaza A, Di Crescenzo A, Sordo M, Suárez-Llorens A (2017) An R script to compute the weighted right/left tail index and a new skewness functional for univariate probability distributions. University of Cádiz repository, Rodin. http://hdl.handle.net/10498/19833. Accessed 16 Nov 2017

  • Azzalini A (1985) A class of distributions which includes the normal ones. Scand J Stat 12:171–178

    MathSciNet  MATH  Google Scholar 

  • Azzalini A (1986) Further results on a class of distributions which includes the normal ones. Statistica 46:199–208

    MathSciNet  MATH  Google Scholar 

  • Balanda KP, MacGillivray HL (1988) Kurtosis: a critical review. Am Stat 42:111–119

    Google Scholar 

  • Barlow RE, Proschan F (1975) Statistical theory of reliability and life testing: probability models. Holt, Rinehart and Winston, New York

    MATH  Google Scholar 

  • Belzunce F, Mulero J, Ruíz JM, Suárez-Llorens A (2015) On relative skewness for multivariate distributions. Test 24:813–834

    Article  MathSciNet  MATH  Google Scholar 

  • Benjamini Y, Krieger AM (1996) Concepts and measures for skewness with data-analytic implications. Can J Stat 24:131–140

    Article  MathSciNet  MATH  Google Scholar 

  • Boshnakov GN (2007) Some measures for asymmetry of distributions. Stat Probab Lett 77:1111–1116

    Article  MathSciNet  MATH  Google Scholar 

  • Boyd S, Vandenberghe L (2004) Convex optimization. Cambridge University Press, New York

    Book  MATH  Google Scholar 

  • Case KE, Fair RC (1999) Principles of economics, 5th edn. Prentice-Hall, London

    Google Scholar 

  • Charlier CVL (1905) Über das Fehlergesetz. Arkiv für Matematik, Astronomi och Fysik 8:1–9

    MATH  Google Scholar 

  • Critchley F, Jones MC (2008) Asymmetry and gradient asymmetry functions: density-based skewness and kurtosis. Scand J Stat 35:415–437

    Article  MathSciNet  MATH  Google Scholar 

  • DeCarlo LT (1997) On the meaning and use of kurtosis. Psychol Methods 2:292–307

    Article  Google Scholar 

  • Doksum KA (1975) Measures of location and asymmetry. Scand J Stat 2:11–22

    MathSciNet  MATH  Google Scholar 

  • Efron B (1979) Bootstrap methods: another look at the jackknife. Ann Stat 7:1–26

    Article  MathSciNet  MATH  Google Scholar 

  • Groeneveld RA (1998) A class of quantile measures for kurtosis. Am Stat 52:994–1011

    MathSciNet  Google Scholar 

  • Groeneveld RA, Meeden G (1984) Measuring skewness and kurtosis. J R Stat Soc Ser D (The Statistician) 33:391–399

    Google Scholar 

  • Hosking JRM, Wallis JR (1987) Parameter and quantile estimation for the generalized Pareto distribution. Technometrics 29:339–349

    Article  MathSciNet  MATH  Google Scholar 

  • Jones MC, Pewsey A (2009) Sinh-arcsinh distributions. Biometrika 96:761–780

    Article  MathSciNet  MATH  Google Scholar 

  • Jones MC, Rosco JF, Pewsey A (2011) Skewness-invariant measures of kurtosis. Am Stat 65:89–95

    Article  MathSciNet  Google Scholar 

  • MacGillivray HL (1986) Skewness and asymmetry: measures and orderings. Ann Stat 14:994–1011

    Article  MathSciNet  MATH  Google Scholar 

  • MacGillivray HL (1992) Shape properties of the \(g\)-and-\(h\) and Johnson families. Commun Stat Theory Methods 21:1233–1250

    Article  MathSciNet  MATH  Google Scholar 

  • MacGillivray HL, Balanda KP (1988) The relationships between skewness and kurtosis. Aust J Stat 30:319–337

    Article  MathSciNet  MATH  Google Scholar 

  • Oja H (1981) On location, scale, skewness and kurtosis of univariate distributions. Scand J Stat 8:154–168

    MathSciNet  MATH  Google Scholar 

  • Pearson K (1895) Contributions to the mathematical theory of evolution. II. Skew variation in homogeneous material. Philos Trans R Soc Lond Math Phys Eng Sci 186:343–414

    Article  Google Scholar 

  • Pewsey A (2015) Discussion of On families of distributions with shape parameters. Int Stat Rev 83:211–217

    Article  MathSciNet  Google Scholar 

  • Pickands J (1975) Statistical inference using extreme order statistics. Ann Stat 3:119–131

    Article  MathSciNet  MATH  Google Scholar 

  • Shaked M, Shanthikumar G (2007) Stochastic orders. Springer, New York

    Book  MATH  Google Scholar 

  • Silverman BW (1986) Density estimation for statistics and data analysis. Chapman & Hall, London

    Book  MATH  Google Scholar 

  • Sordo MA, Souza MC, Suárez-Llorens A (2015) A new variability order based on tail-heaviness. Statistics 49:1042–1061

    Article  MathSciNet  MATH  Google Scholar 

  • Sunoj SM, Linu MN (2012) Dynamic cumulative residual Rényi’s entropy. Statistics 46:41–56

    Article  MathSciNet  MATH  Google Scholar 

  • van Zwet WR (1964) Convex transformations of random variables. Mathematical centre tracts, vol 7. Mathematisch Centrum, Amsterdam

    Google Scholar 

  • Wand MP, Jones MC (1995) Kernel smoothing. Chapman & Hall, London

    Book  MATH  Google Scholar 

  • Westfall PH (2014) Kurtosis as peakedness, 1905–2014. R.I.P. Am Stat 68:191–195

    Article  MathSciNet  Google Scholar 

  • Yule GW (1912) An introduction to the theory of statistics, 2nd edn. Griffin, London

    MATH  Google Scholar 

  • Zarezadeh S, Asadi M (2010) Results on residual Rényi entropy of order statistics and record values. Inf Sci 180:4195–4206

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank two anonymous referees and the Editor of the journal for their extensive and helpful comments which have led to significant improvements in both the content and presentation of the paper. The authors also acknowledge support received from the Ministerio de Economía y Competitividad (Spain) under Grants MTM2014-57559-P and MTM2017-89577-P, and from the group GNCS of INdAM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Arriaza.

Ethics declarations

Conflict of interest

On behalf of all the authors, the corresponding author states that there is no conflict of interest.

Appendix A: Proofs

Appendix A: Proofs

Proof of Proposition 2.1

 From (2) we observe that

$$\begin{aligned} G^{-1}F(\cdot ) \hbox { is convex }\Leftrightarrow & {} G^{-1}F(t)-G^{-1}F(s) \ge \frac{d}{dx}G^{-1}F(s)(t-s), \, \, \forall \, s,\,t \in D_X\\\Leftrightarrow & {} G^{-1}F(t)-G^{-1}F(s)\ge \frac{f(s)}{g(G^{-1}(F(s)))}(t-s), \,\, \forall \, s,t \in D_X\\\Leftrightarrow & {} y_u-y_{p} \ge \frac{f(x_{p})}{g(y_{p})}(x_u-x_{p}), \, \, \forall \, u,\,p \in (0,1)\\\Leftrightarrow & {} (x_p-x_u)f(x_p)\ge (y_p-y_u)g(y_p),\quad \forall u,p\in (0,1), \end{aligned}$$

where the third equivalence follows by choosing \(t=x_u\), \(s=x_{p}\) with \(u,\, p\in (0,1)\) and using the fact that \(G^{-1}F(\cdot )\) maps the quantiles of X to the corresponding quantiles of Y. \(\square \)

Proof of Corollary 2.2

 Using \(F^{-1}(U)=_{st} X\), where U denotes a uniform random variable on (0, 1), we see that \((x_p-x_u)^+ f(x_p)\) and \((x_p-x_u)^- f(x_p)\) can be thought of as realizations of the random variables \((F^{-1}(U)-x_u)^+f(F^{-1}(U))\) and \((F^{-1}(U)-x_u)^-f(F^{-1}(U))\), respectively. Analogously for Y. The proof then follows directly from Corollary 2.1 and Theorem 1.A.1. in Shaked and Shanthikumar (2007). \(\square \)

Proof of Lemma 2.2

 The proof follows directly from Definition 2.1 and the facts that \(-\,x_u\) is the \((1-u)\)th quantile of \(-\,X\), \(a^+=(-\,a)^-\) for all \(a\in \mathbb R\) and \(f_{-X}(-X)=f_X (X)\). \(\square \)

Proof of Lemma 2.3

 From (3) we can write

$$\begin{aligned} R_X(u)= \displaystyle \int _{u}^{1}x_pf(x_p)dp-x_u \displaystyle \int _{u}^{1}f(x_p)dp, \quad \forall u\in (0,1). \end{aligned}$$

The result follows on taking derivatives and using \(x'_u=1/f(x_u)\). \(\square \)

Proof of Theorem 2.1

 The sufficient condition of (i) for \(R_X(u)\) follows from (3) and the fact that \((x_p-x_u)^+ f(x_p)\), with \(u,p\in (0,1)\), is not affected by translations and positive changes of scale. To prove the necessary condition, assume that \(R_X(u)=R_Y(u)\), for all \( u\in (0,1)\). Taking derivatives and using Lemma 2.3 we obtain that

$$\begin{aligned} \left[ \log \left( \displaystyle \int _{u}^{1}f(x_p)dp\right) \right] '=\left[ \log \left( \displaystyle \int _{u}^{1}g(y_p)dp\right) \right] ', \quad \forall u\in (0,1), \end{aligned}$$

which trivially implies that there exists an \(a>0\) such that

$$\begin{aligned} \displaystyle \int _{u}^{1}f(x_p)dp=a \displaystyle \int _{u}^{1}g(y_p)dp, \quad \forall u\in (0,1). \end{aligned}$$

By taking derivatives again, we have \(f(x_u)=ag(y_u)\), for all \(u\in (0,1)\) or, equivalently, \(y'_u=ax'_u\), for all \(u\in (0,1)\). Therefore, there exists a \(b\in \mathbb {R}\) such that \(y_u=ax_u+b\), for all \(u\in (0,1)\), which means that \(Y=_{st}aX+b\), i.e., \(G\in [F]\). The proof for \(L_X(u)\) follows straightforwardly using Lemma 2.2.

Part (ii) holds because of the constructions of \(R_X(u)\) and \(L_X(u)\).

In order to prove (iii), assume that X and Y are symmetric and \(X\le _{k}Y\), which means that \(G^{-1}F(x)\) is convex for all \(x>m_X\), where \(m_X\) denotes the median of X. This implies, by restricting Proposition 2.1 to \(D=(m_X,+\,\infty )\), that \(R_X(u) \ge R_Y(u)\), for all \(u \in (1/2,1)\). Now, from Lemma 2.2, the location invariance property and the symmetry of X we have

$$\begin{aligned} L_{X}(u)= & {} R_{-X}(1-u)\\= & {} R_{-X+m_X}(1-u) =R_{X-m_X}(1-u)=R_{X}(1-u),\ u\in (0,1), \end{aligned}$$

and it follows that \(L_X(u) \ge L_Y(u)\), for all \(u\in (0,1/2)\). \(\square \)

Proof of Theorem 2.2

 From the assumptions, and using L’Hôpital’s rule and Lemma 2.3, we obtain

$$\begin{aligned} \lim _{u \rightarrow 1^{-}} \frac{R_X(u)}{ R_Y(u)}= & {} \lim _{u \rightarrow 1^{-}} \frac{\log \left( \displaystyle \int _{u}^{1}g(y_p)dp\right) }{\log \left( \displaystyle \int _{u}^{1}f(x_p)dp\right) } \\= & {} \lim _{u \rightarrow 1^{-}} \frac{-\log \left( \displaystyle \int _{y_u}^{+\,\infty } g^2(t)dt\right) }{-\log \left( \displaystyle \int _{x_u}^{+\,\infty }f^2(t)dt\right) } > 1, \end{aligned}$$

where the second equality follows by changing the variables in the integrals. It follows that there exists an \(u_0 \in (0,1)\) such that

$$\begin{aligned} H_2(Y;y_u) = -\log \left( \displaystyle \int _{y_u}^{+\,\infty } \frac{g^2(t)}{ (1-u)^2}dt\right) \ge -\log \left( \displaystyle \int _{x_u}^{+\,\infty }\frac{ f^2(t)}{(1-u)^2}dt\right) =H_2(X;x_u), \end{aligned}$$

for all \(u\ge u_0\). \(\square \)

Proof of Proposition 3.1

 The necessary condition follows from Theorem 2.1(i). In order to prove the sufficient condition, let X be a GP(ck) random variable with \(c < 2\) and \(k > 0\). Observe that, if \(c=0,\), X follows an exponential distribution and the result follows from Table 1. Suppose, therefore, that \(c\ne 0\). From (5) the density and quantile functions of X are given by

$$\begin{aligned}f_{X}(x)=\frac{1}{k }\left( 1-\frac{c}{k}x\right) ^{\frac{1-c}{c}}, ~~~~~~ x_p=\frac{k}{c}[1-(1-p)^{c}] \end{aligned}$$

and therefore

$$\begin{aligned} R_{X}(u)= & {} \displaystyle \int _{u}^{1}(x_p-x_u)f_{X}(x_p)dp\\= & {} \frac{1}{c}\left[ (1-u)^{c}\displaystyle \int _{u}^{1}(1-p)^{1-c}dp -\displaystyle \int _{u}^{1}(1-p)dp \right] \\= & {} \frac{1}{4-2c}(1-u)^{2},\quad \hbox {for all }u\in (0,1). \end{aligned}$$

\(\square \)

Proof of Proposition 3.2

 Let f denote the density of X. From Lemma 2.3 we have

$$\begin{aligned} \left[ \log \displaystyle \int _{u}^{1}f(x_p)dp \right] ^{\prime }=\frac{1}{R^{\prime }_X(u)}. \end{aligned}$$

Then, there exists a \(c>0\) such that

$$\begin{aligned} \displaystyle \int _{u}^{1}f(x_p)dp = c\,\exp \left( \displaystyle \int \frac{1}{R^{\prime }_X(u)}du \right) . \end{aligned}$$

Using \(f(x_u)=1/x_u^{\prime }\), we have

$$\begin{aligned} x^{\prime }_u = -\,a\,R^{\prime }_X(u)\,\exp \left( -\displaystyle \int \frac{1}{R^{\prime }_X(u)}du \right) ,\quad \hbox {with}\,\, a=\frac{1}{c}>0, \end{aligned}$$

and by integration we obtain

$$\begin{aligned} x_u = - a \displaystyle \int \,R^{\prime }_X(u)\,\exp \left( -\displaystyle \int \frac{1}{R^{\prime }_X(u)}du \right) du+b,\quad \hbox {with}\,\, a>0,\, b\in \mathbb {R}, \end{aligned}$$

which concludes the proof. \(\square \)

Proof of Proposition 4.1

 Part (i) follows from Theorem 2.1(i). Similarly, (iii) and (iv) follow straightforwardly from Lemma 2.2 and Theorem 2.1(ii). To prove (ii), first suppose that X is symmetric about the median \(m_X\), which implies that \(X-m_X=_{st} -X+m_X\). Hence, using Lemma 2.2 and Theorem 2.1(i), we have

$$\begin{aligned} L_{X}(u)=R_{-X}(1-u)=R_{-X+m_X}(1-u) =R_{X-m_X}(1-u)=R_{X}(1-u), \end{aligned}$$

which implies that \(\textit{SK}_X(u) = 0\), for all \(u\in (0,1)\).

Conversely, assume \(\textit{SK}_X(u) = 0\), for all \(u\in (0,1)\). From the definition of \(\textit{SK}_X(u)\), this means that \(L_{X}(u)=R_{X}(1-u)\) holds for \(u\in (0,1)\). It follows from Lemma 2.2 that \(R_{-X}(1-u)=R_{X}(1-u)\) for \(u\in (0,1)\). Applying Theorem 2.1(i), there exists an \(a>0\) and a \(b\in \mathbb {R}\) such that \(-\,X=_{st}aX+b\). By taking variances and expectations it follows that \(a=1\) and \(b=-2 \mu _X\), where \(\mu _X\) represents the expectation of X. Therefore \(-\,X+\mu _X=_{st} X -\mu _X\) which implies that X is symmetrically distributed. \(\square \)

Proof of Proposition 4.2

 Suppose that \(-\,X\le _c X\). The proof for when \(X\le _c -X\) is analogous. It follows from Proposition 4.1(iv) that \(\textit{SK}_{-X}(u)\le \textit{SK}_X(u)\), for all \(u\in (0,1)\), which implies, by Proposition 4.1(iii), that \(-\,\textit{SK}_{X}(u)\le \textit{SK}_X(u)\) holds for all \(u\in (0,1)\). This concludes the proof. \(\square \)

Proof of Corollary 4.1

 Assume that f is increasing on \(D_X\). The proof for when f is decreasing is similar. From Proposition 4.2 it is sufficient to verify that \(X \le _{c} -X\). Denoting the distribution function of \(-\,X\) by \(G(x)=1-F(-x)\), we have

$$\begin{aligned} G^{-1}F(x) \hbox { is convex on } D_X\Longleftrightarrow & {} -F^{-1}(1-F(x)) \hbox { is convex on } D_X, \\\Longleftrightarrow & {} \frac{f(x)}{f(F^{-1}(1-F(x)))} \hbox { is increasing on } D_X, \\\Longleftrightarrow & {} \frac{f(x_u)}{f(x_{1-u})} \hbox { is increasing on } u\in (0,1), \end{aligned}$$

where the second equality follows by taking derivatives and the third one by making a change of variable. Since f is increasing, we see that \(f(x_u)\) and \(f(x_{1-u})\) are increasing and decreasing functions of u, respectively, in the interval (0, 1). This concludes the proof. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arriaza, A., Di Crescenzo, A., Sordo, M.A. et al. Shape measures based on the convex transform order. Metrika 82, 99–124 (2019). https://doi.org/10.1007/s00184-018-0667-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00184-018-0667-y

Keywords

Navigation