Skip to main content
Log in

Hyperdeterminantal point processes

  • Published:
Metrika Aims and scope Submit manuscript

Abstract

As well as arising naturally in the study of non-intersecting random paths, random spanning trees, and eigenvalues of random matrices, determinantal point processes (sometimes also called fermionic point processes) are relatively easy to simulate and provide a quite broad class of models that exhibit repulsion between points. The fundamental ingredient used to construct a determinantal point process is a kernel giving the pairwise interactions between points: the joint distribution of any number of points then has a simple expression in terms of determinants of certain matrices defined from this kernel. In this paper we initiate the study of an analogous class of point processes that are defined in terms of a kernel giving the interaction between 2M points for some integer M. The role of matrices is now played by 2M-dimensional “hypercubic” arrays, and the determinant is replaced by a suitable generalization of it to such arrays—Cayley’s first hyperdeterminant. We show that some of the desirable features of determinantal point processes continue to be exhibited by this generalization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barvinok AI (1995) New algorithms for linear k-matroid intersection and matroid k-parity problems. Math Programming 69(3, Ser. A): 449–470

    Article  MathSciNet  Google Scholar 

  • Cayley A (1843) On the theory of determinants. Trans Cambridge Philos Soc 8: 1–16

    Article  Google Scholar 

  • Daley DJ, Vere-Jones D (1988) An introduction to the theory of point processes. Springer series in statistics. Springer, New York

    MATH  Google Scholar 

  • Diaconis P, Evans SN (2000) Immanants and finite point processes. J Combin Theory Ser A 91(1–2): 305–321, in memory of Gian-Carlo Rota

  • Gel′fand IM, Kapranov MM, Zelevinsky AV (1992) Hyperdeterminants. Adv Math 96(2): 226–263

    Article  MathSciNet  Google Scholar 

  • Gel′fand IM, Kapranov MM, Zelevinsky AV (1994) Discriminants, resultants, and multidimensional determinants. Mathematics: theory & applications. Birkhäuser Boston, Boston

    Google Scholar 

  • Glynn DG (2006) Rota’s basis conjecture and Cayley’s first hyperdeterminant. Available at http://homepage.mac.com/dglynn/.Public/Rota2.pdf

  • Hough JB, Krishnapur M, Peres Y, Virág B (2006) Determinantal processes and independence. Probab Surv 3: 206–229 (electronic)

    Article  MathSciNet  Google Scholar 

  • Luque JG, Thibon JY (2003) Hankel hyperdeterminants and Selberg integrals. J Phys A 36(19): 5267–5292

    Article  MATH  MathSciNet  Google Scholar 

  • Luque JG, Thibon JY (2004) Hyperdeterminantal calculations of Selberg’s and Aomoto’s integrals. Mol Phys 102(11–12): 1351–1359

    Google Scholar 

  • Lyons R (2003) Determinantal probability measures. Publ Math Inst Hautes Études Sci 98: 167–212

    MATH  MathSciNet  Google Scholar 

  • Macchi O (1975) The coincidence approach to stochastic point processes. Adv Appl Probab 7: 83–122

    Article  MATH  MathSciNet  Google Scholar 

  • Muir T (1960) A treatise on the theory of determinants. Revised and enlarged by William H. Metzler. Dover Publications Inc., New York

  • Oldenburger R (1934a) Composition and rank of n-way matrices and multilinear forms. Ann Math (2) 35(3): 622–653

    Article  MathSciNet  Google Scholar 

  • Oldenburger R (1934b) Composition and rank of n-way matrices and multilinear forms—supplement. Ann Math (2) 35(3): 654–657

    Article  MathSciNet  Google Scholar 

  • Oldenburger R (1934c) Transposition of indices in multiple-labeled determinants. Am Math Monthly 41(6): 350–356

    Article  MathSciNet  Google Scholar 

  • Oldenburger R (1936) Non-singular multilinear forms and certain p-way matrix factorizations. Trans Am Math Soc 39(3): 422–455

    Article  MATH  MathSciNet  Google Scholar 

  • Oldenburger R (1940) Higher dimensional determinants. Am Math Monthly 47: 25–33

    Article  MathSciNet  Google Scholar 

  • Pascal E (1900) Die determinanten. Teubner, Leipzig

    MATH  Google Scholar 

  • Rice LH (1918) P-way determinants, with an application to transvectants. Am J Math 40(3): 242–262

    Article  MATH  MathSciNet  Google Scholar 

  • Rice LH (1930) Introduction to higher determinants. J Math Phys (Massachusetts Institute of Technology) 9: 47–70

    Google Scholar 

  • Shirai T, Takahashi Y (2000) Fermion process and Fredholm determinant. In: Proceedings of the Second ISAAC Congress, vol 1 (Fukuoka, 1999), Kluwer Acad. Publ., Dordrecht, Int. Soc. Anal. Appl. Comput., vol 7, pp 15–23

  • Shirai T, Takahashi Y (2003a) Random point fields associated with certain Fredholm determinants. I. Fermion, Poisson and boson point processes. J Funct Anal 205(2): 414–463

    Article  MATH  MathSciNet  Google Scholar 

  • Shirai T, Takahashi Y (2003b) Random point fields associated with certain Fredholm determinants. II. Fermion shifts and their ergodic and Gibbs properties. Ann Probab 31(3): 1533–1564

    Article  MATH  MathSciNet  Google Scholar 

  • Shirai T, Takahashi Y (2004) Random point fields associated with fermion, boson and other statistics. In: Stochastic analysis on large scale interacting systems. Adv Stud Pure Math, vol 39, pp. 345–354. Mathematical Society, Japan

  • Sokolov NP (1960) Prostranstvennye matritsy i ikh prilozheniya. Gosudarstv. Izdat. Fiz.-Mat. Lit., Moscow

    Google Scholar 

  • Sokolov NP (1972) Vvedenie v teoriyu mnogomernykh matrits. Izdat. “Naukova Dumka”, Kiev

  • Soshnikov A (2000) Determinantal random point fields. Uspekhi Mat Nauk 55(5(335)): 107–160

    MathSciNet  Google Scholar 

  • Vere-Jones D (1997) Alpha-permanents and their applications to multivariate gamma, negative binomial and ordinary binomial distributions. New Zealand J Math 26(1): 125–149

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven N. Evans.

Additional information

S. N. Evans supported in part by NSF grant DMS-0405778. A. Gottlieb supported by the Vienna Science and Technology Fund, via the project “Correlation in quantum systems”.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Evans, S.N., Gottlieb, A. Hyperdeterminantal point processes. Metrika 69, 85–99 (2009). https://doi.org/10.1007/s00184-008-0209-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00184-008-0209-0

Keywords

Navigation