Skip to main content

Derrida’s Random Energy Models

From Spin Glasses to the Extremes of Correlated Random Fields

  • Chapter
Correlated Random Systems: Five Different Methods

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 2143))

Abstract

We discuss Derrida’s random energy models under the light of the recent advances in the study of the extremes of highly correlated random fields. In particular, we present a refinement of the second moment method which provides a unifying approach to models where multiple scales can be identified, such is the case for e.g. branching diffusions, the 2-dim Gaussian free field, certain issues of percolation in high dimensions, or cover times. The method identifies some universal mechanisms which seemingly play a fundamental role also in the behavior of the extremes of the characteristic polynomials of certain random matrix ensembles, or in the extremes of the Riemann ζ-function along the critical line.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    It goes without saying, if this is the case technicalities are naturally reduced by an order of magnitude.

  2. 2.

    One may follow analogous steps in order to identify the scales in a GREM(K), for generic K. In this case one simply decomposes telescopically into a sum of K terms ensuing from local projection on larger and larger neighborhoods.

References

  1. D. Aldous, Probability Approximations via the Poisson Clumping Heuristic (Springer, New York, 1989)

    Book  MATH  Google Scholar 

  2. L.-P. Arguin, O. Zindy, Poisson-Dirichlet statistics for the extremes of a log-correlated Gaussian field. Ann. Appl. Probab. 24(4), 1446–1481 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  3. L.-P. Arguin, N. Kistler, O. Zindy, Percolation on the hypercube (in preparation)

    Google Scholar 

  4. L.-P. Arguin, A. Bovier, N. Kistler, Genealogy of extremal particles in branching Brownian motion. Commun. Pure Appl. Math. 64, 1647–1676 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  5. D. Belius, N. Kistler, The subleading order of two-dimensional cover times (2014) [ArXiv e-prints]

    Google Scholar 

  6. J.D. Biggins, Martingale convergence in the branching random walk. J. Appl. Probab. 14, 25–37 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  7. E. Bolthausen, N. Kistler, On a nonhierarchical version of the generalized random energy model, II. Ultrametricity, Stoch. Process. Appl. 119, 2357–2386 (2009)

    Google Scholar 

  8. E. Bolthausen, A.-S. Sznitman, Ten Lectures on Random Media, DMV Seminar Band 32, Oberwolfach Lecture Series (Birkhäuser, New York, 2002)

    Book  Google Scholar 

  9. E. Bolthausen, J.-D. Deuschel, G. Giacomin, Entropic repulsion and the maximum of the two-dimensional harmonic crystal. Ann. Probab. 29, 1670–1692 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  10. P. Bourgade, Mesoscopic fluctuations of the ζ-zeros. Probab. Theory Relat. Fields 148, 479–500 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  11. A. Bovier, From spin glasses to branching Brownian motion and back? Available at https://www.dropbox.com/s/clbtbp59lnho4wr/bbm.pdf (2013)

  12. A. Bovier, L. Hartung, The extremal process of two-speed branching Brownian motion (2013) [ArXiv e-prints]

    Google Scholar 

  13. A. Bovier, L. Hartung, Variable speed branching Brownian motion 1. Extremal processes in the weak correlation regime (2014) [ArXiv e-prints]

    Google Scholar 

  14. A. Bovier, I. Kurkova, Derrida’s generalized random energy models, 1. Models with finitely many hierarchies. Ann. Inst. H. Poincare Probab. Stat. B Probab. Stat. 40, 439–480 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  15. A. Bovier, I. Kurkova, Derrida’s generalized random energy models. 2. Models with continuous hierarchies. Ann. Inst. H. Poincare Probab. Stat. B Probab. Stat. 40, 481–495 (2004)

    Google Scholar 

  16. A. Bovier, I. Kurkova, A short course on mean field spin glasses, in Spin Glasses: Statics and Dynamics. Summer School Paris 2007, ed. by A. Boutet de Monvel, A. Bovier (Birkhäuser, Boston, 2009)

    Google Scholar 

  17. M. Bramson, Maximal displacement of branching Brownian motion. Commun. Pure Appl. Math. 31, 531–581 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  18. J. Cook, B. Derrida, Finite size effects in random energy models and in the problem of polymers in a random medium. J. Stat. Phys. 63, 505–539 (1991)

    Article  MathSciNet  Google Scholar 

  19. O. Daviaud, Extremes of the discrete two-dimensional Gaussian free field. Ann. Probab. 34, 962–986 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  20. A. Dembo, J. Rosen, Y. Peresm, O. Zeitouni, Cover times for Brownian motion and random walks in two dimensions. Ann. Math. 160(2), 433–464 (2004)

    Article  MATH  Google Scholar 

  21. B. Derrida, Random energy model: An exactly solvable model of disordered systems. Phys. Rev. B 24, 2613–2626 (1981)

    Article  MathSciNet  Google Scholar 

  22. B. Derrida, A generalization of the random energy model that includes correlations between the energies. J. Phys. Lett. 46, 401–407 (1985)

    Article  MathSciNet  Google Scholar 

  23. M. Fang, O. Zeitouni, Slowdown for time inhomogeneous branching Brownian motion. J. Stat. Phys. 149, 1–9 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  24. J. Fill, R. Pemantle, Oriented percolation, first-passage percolation and covering times for Richardson’s model on the n-cube. Ann. Appl. Probab. 3, 593–629 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  25. K. Ford, Sharp probability estimates for random walks with barriers. Probab. Theory Relat. Fields 145, 269–283 (2009)

    Article  MATH  Google Scholar 

  26. Y.V. Fyodorov, J.-P. Bouchaud, Statistical mechanics of a single particle in a multiscale random potential: Parisi landscapes in finite-dimensional Euclidean spaces. J. Phys. A 41, 324009 (2008)

    Article  MathSciNet  Google Scholar 

  27. Y.V. Fyodorov, J.P. Keating, Freezing transitions and extreme values: random matrix theory, and disordered landscapes. Philos. Trans. R. Soc. Lond. A. Math. Phy. Eng. Sci. 372(2007), 20120503 (2014)

    Google Scholar 

  28. Y.V. Fyodorov, J.P. Keating, G.A. Hiary, Freezing transition, characteristic polynomials of random matrices, and the Riemann zeta-function. Phys. Rev. Lett. 108, 170601 (2012)

    Article  Google Scholar 

  29. Y.V. Fyodorov, P. Le Doussal, A. Rosso, Counting function fluctuations and extreme value threshold in multifractal patterns: The case study of an ideal 1∕f noise. J. Stat. Phys. 149, 898–920 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  30. S. Ghirlanda, F. Guerra, General properties of overlap probability distributions in disordered spin systems. Towards Parisi ultrametricity. J. Phys. A Math. Gen. 31(46), 9149 (1998)

    Google Scholar 

  31. J.-B. Gouéré, Branching brownian motion seen from its left-most particle. Bourbaki Seminar 65, 1067, SMF (2013)

    Google Scholar 

  32. F. Guerra, Broken replica symmetry bounds in the mean field spin glass model. Commun. Math. Phys. 233, 1–12 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  33. A. Klimovsky, High-dimensional Gaussian fields with isotropic increments seen through spin glasses. Electron. Commun. Probab. 17, 1–14 (2012)

    Article  MathSciNet  Google Scholar 

  34. J. Komlos, P. Major, G. Tusnady, An approximation of partial sums of independent random variables and the sample distribution function. Wahrsch. verw. Gebiete 32, 111–131 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  35. P. Maillard, O. Zeitouni, Slowdown in branching Brownian motion with inhomogeneous variance (2013) [ArXiv e-prints]

    Google Scholar 

  36. B. Mallein, Maximal displacement of a branching random walk in time-inhomogeneous environment (2013) [ArXiv e-prints]

    Google Scholar 

  37. M. Mézard, G. Parisi, M. Virasoro, Spin Glass Theory and Beyond (World Scientific, Singapore, 1987)

    MATH  Google Scholar 

  38. D. Panchenko, The Parisi ultrametricity conjecture. Ann. Math. 177(1), 383–393 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  39. D. Ruelle, A mathematical reformulation of REM and GREM. Commun. Math. Phys. 108, 225–239 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  40. M. Schmidt, Ph.D. Thesis, Frankfurt University (ongoing)

    Google Scholar 

  41. A. Selberg, Contribution to the theory of the Riemann zeta-function. Arch. Math. Naturvid. 48, 89–155 (1946)

    MATH  MathSciNet  Google Scholar 

  42. B. Simon, A celebration of Jürg and Tom. J. Stat. Phys. 134, 809–812 (2009)

    Article  MATH  Google Scholar 

  43. M. Talagrand, Mean Field Models for Spin Glasses I & II. Ergebnisse der Mathematik und ihrer Grenzgebiete (Springer, Berlin, 2011)

    Google Scholar 

  44. O. Zeitouni, Branching random walks and Gaussian free fields. Available at http://cims.nyu.edu/~zeitouni/pdf/notesBRW.pdf (2012)

Download references

Acknowledgements

I am indebted to Erwin Bolthausen, who taught me all I know about the random energy models. It is a pleasure to thank Louis-Pierre Arguin, David Belius, Anton Bovier, Yan V. Fyodorov and Markus Petermann for the countless discussions on the topics of these notes. This work has been supported by the German Research Council in the SFB 611, the Hausdorff Center for Mathematics in Bonn, and Aix Marseille University/CIRM in Luminy through the Chair Jean Morlet. Hospitality of the University of Montreal where part of this work was done is also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicola Kistler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kistler, N. (2015). Derrida’s Random Energy Models. In: Gayrard, V., Kistler, N. (eds) Correlated Random Systems: Five Different Methods. Lecture Notes in Mathematics, vol 2143. Springer, Cham. https://doi.org/10.1007/978-3-319-17674-1_3

Download citation

Publish with us

Policies and ethics