Skip to main content
Log in

Incomplete Determinantal Processes: From Random Matrix to Poisson Statistics

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We study linear statistics of a class of determinantal processes which interpolate between Poisson and GUE/Ginibre statistics in dimension 1 or 2. These processes are obtained by performing an independent Bernoulli percolation on the particle configuration of a log-gas confined in a general potential. We show that, depending on the expected number of deleted particles, there is a universal transition for mesoscopic linear statistics. Namely, at small scales, the point process behave according to random matrix theory, while, at large scales, it needs to be renormalized because the variance of any linear statistic diverges. The crossover is explicitly characterized as the superposition of a \(H^{1}\)- or \(H^{1/2}\)-correlated Gaussian noise depending on the dimension and an independent Poisson process. The proof consists in computing the limits of the cumulants of linear statistics using the asymptotics of the correlation kernel of the process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. For any \(k \ge 0\), \(P_k\) is a polynomial of degree k and its leading coefficient is positive.

  2. \(T_k(\cos \theta ) = \cos (k\theta )\) for any \(k\ge 0\) and \(\theta \in {\mathbb {R}}\).

  3. By convention \( {l \atopwithdelims ()m} = 0 \) if \(m>l\).

References

  1. Ameur, Y., Hedenmalm, H., Makarov, N.: Berezin transform in polynomial Bergman spaces. Commun. Pure Appl. Math. 63, 1533–1584 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ameur, Y., Hedenmalm, H., Makarov, N.: Fluctuations of eigenvalues of random normal matrices. Duke Math. J. 159, 31–81 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ameur, Y., Hedenmalm, H., Makarov, N.: Random normal matrices and Ward identities. Ann. Probab. 43, 1157–1201 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  4. Anderson, G.W., Guionnet, A., Zeitouni, O.: An Introduction to Random Matrices. Cambridge Univ. Press, Cambridge (2010)

    MATH  Google Scholar 

  5. Bekerman, F., Lodhia, A.: Mesoscopic central limit theorem for general \(\beta \)-ensembles. Ann. Inst. Henri Poincar Probab. Stat. 54(4), 1917–1938 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  6. Berggren, T., Duits, M.: Mesoscopic fluctuations for the thinned circular unitary ensemble. Math. Phys. Anal. Geom. 20(3), 19 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  7. Berman, R.J.: Bergman kernels for weighted polynomials and weighted equilibrium measures of \({\mathbb{C}}^n\). Indiana U. Math. J. 58, 1921–1946 (2009)

    Article  MATH  Google Scholar 

  8. Bohigas, O., Pato, M.P.: Missing levels and correlated spectra. Phys. Lett. B 595(036212), 171–176 (2004)

    Article  ADS  Google Scholar 

  9. Bohigas, O., Pato, M.P.: Randomly incomplete spectra and intermediate statistics. Phys. Rev. E 3(74), 036212 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  10. Bauerschmidt, R., Bourgade, P., Nikula, M., Yau, H.-T.: The two-dimensional Coulomb plasma: quasi-free approximation and central limit theorem. arXiv:1609.08582

  11. Borodin, A.: Determinantal point processes, in the Oxford handbook of random matrix theory, pp. 231–249. Oxford Univ. Press, Oxford (2011)

    Google Scholar 

  12. Borot, G., Guionnet, A.: Asymptotic expansion of beta matrix models in the one-cut regime. Commun. Math. Phys. 317(2), 447–483 (2013)

    Article  ADS  MATH  Google Scholar 

  13. Borot, G., Guionnet, A.: Asymptotic expansion of beta matrix models in the multi-cut regime. arXiv:1303.1045

  14. Bothner, T., Deift, P., Its, A., Krasovsky, I.: On the asymptotic behavior of a log gas in the bulk scaling limit in the presence of a varying external potential I. Commun. Math. Phys. 337, 1397–1463 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Bothner, T., Deift, P., Its, A., Krasovsky, I.: On the asymptotic behavior of a log gas in the bulk scaling limit in the presence of a varying external potential II. In Large truncated Toeplitz matrices, Toeplitz operators, and related topics, pp. 213–234. Birkhuser/Springer, Cham (2017)

  16. Breuer, J., Duits, M.: Universality of mesoscopic fluctuations for orthogonal polynomial ensembles. Commun. Math. Phys. 342, 491–531 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Breuer, J., Duits, M.: Central limit theorems for biorthogonal ensembles and asymptotics of recurrence coefficients. J. Am. Math. Soc. 30(1), 27–66 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  18. Chafaï, D., Hardy, A., Maïda, M.: Concentration for Coulomb gases and Coulomb transport inequalities. J. Funct. Anal. 275(6), 1447–1483 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  19. Charlier, C., Claeys, T.: Thinning and conditioning of the circular unitary ensemble. Random Matrices 6(2), 1750007 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  20. Costin, O., Lebowitz, J.: Gaussian fluctuations in random matrices. Phys. Rev. Lett. 75, 69–72 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  21. Dean, D.S., Doussal, P.L., Majumdar, S.N., Schehr, G.: Finite temperature free fermions and the Kardar–Parisi–Zhang equation at finite time. Phys. Rev. Lett. 114(11), 110402 (2015)

    Article  ADS  Google Scholar 

  22. Deift, P.: Orthogonal Polynomials and Random Matrices: A Riemann–Hilbert approach. Courant Lecture Notes in Mathematics, vol. 3. Courant Institute of Mathematical Sciences; American Mathematical Society, New York; Providence (1999)

    Google Scholar 

  23. Deift, P.: Some open problems in random matrix theory and the theory of integrable systems. II. SIGMA 13, 016 (2017)

    MathSciNet  MATH  Google Scholar 

  24. Deift, P., Kriecherbauer, T., McLaughlin, K.T.-R., Venakides, S., Zhou, X.: Uniform asymptotics for polynomials orthogonal with respect to varying exponential weights and applications to universality questions in random matrix theory. Commun. Pure Appl. Math. 52(11), 1335–1425 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  25. Duits, M., Johansson, K.: On mesoscopic equilibrium for linear statistics in Dyson’s Brownian motion. Mem. Am. Math. Soc. 255(1222), 118 (2018)

    MathSciNet  MATH  Google Scholar 

  26. Dyson, F.J.: The Coulomb fluid and the fifth Painlevé transcendent. In: Liu, C.S., Yau, S.T. (eds.) Chen Ning Yang: A Great Physicist of the Twentieth Century, pp. 131–146. International Press, Cambridge (1995)

    Google Scholar 

  27. Erdős, L., Knowles, A.: The Altshuler-Shklovskii formulas for random band matrices I: the unimodular case. Commun. Math. Phys. 333, 1365–1416 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Erdős, L., Knowles, A.: The Altshuler–Shklovskii formulas for random band matrices II: the general case. Ann. Henri Poincaré 16, 709–799 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. He, Y., Knowles, A.: Mesoscopic eigenvalue statistics of Wigner matrices. Ann. Appl. Probab. 27(3), 1510–1550 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  30. Hough, B., Krishnapur, M., Peres, Y., Virág, B.: Determinantal processes and independence. Probab. Surv. 3, 206–229 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  31. Johansson, K.: On fluctuations of eigenvalues of random Hermitian matrices. Duke Math. J. 91, 151–204 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  32. Johansson, K.: Universality of the local spacing distribution in certain ensembles of Hermitian Wigner matrices. Commun. Math. Phys. 215, 683–705 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Johansson, K.: Random Matrices and Determinantal Processes. Mathematical Statistical Physics, pp. 1–55. Elsevier B. V, Amsterdam (2006)

    MATH  Google Scholar 

  34. Johansson, K.: From Gumble to Tracy–Widom. Probab. Theory Relat. Fields 138, 75–112 (2007)

    Article  MATH  Google Scholar 

  35. Johansson, K., Lambert, G.:Gaussian and non-Gaussian fluctuations for mesoscopic linear statistics in determinantal processes. arXiv:1504.06455

  36. König, W.: Orthogonal polynomial ensembles in probability theory. Probab. Surv. 2, 385–447 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  37. Kuijlaars, A.B.J.: Universality in the Oxford Handbook of Random Matrix Theory, pp. 103–134. Oxford Univ. Press, Oxford (2011)

    Google Scholar 

  38. Lambert, G.: Mesoscopic fluctuations for unitary invariant ensembles. Electron. J. Probab. 23(7), 33 (2018)

    MathSciNet  MATH  Google Scholar 

  39. Lambert, G.: CLT for biorthogonal ensembles and related combinatorial identities. Adv. Math. 329, 590–648 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  40. Lavancier, F., Møller, J., Rubak, E.: Determinantal point process models and statistical inference. J. R. Stat. Soc. Ser. B 77(4), 853–877 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  41. Leblé, T., Serfaty, S.: Fluctuations of two-dimensional Coulomb gases. Geom. Funct. Anal. 28(2), 443–508 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  42. Pastur, L.A.: Limiting laws of linear eigenvalue statistics for Hermitian matrix models. J. Math. Phys. 47, 103303 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  43. Pastur, L.A., Shcherbina, M.: Eigenvalue Distribution of Large Random Matrices Mathematical Surveys and Monographs, vol. 171. American Mathematical Society, Providence, RI (2011)

    MATH  Google Scholar 

  44. Rider, B., Virág, B.: Complex determinantal processes and \(H^1\) noise. Electron. J. Probab. 12, 1238–1257 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  45. Rider, B., Virág, B (2007) The noise in the circular law and the Gaussian free field. Int. Math. Res. Notes. https://doi.org/10.1093/imrn/rnm006 (2007)

  46. Shcherbina, M.: Fluctuations of linear eigenvalue statistics of \(\beta \)-matrix models in the multi-cut regime. J. Stat. Phys. 151, 1004–1034 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  47. Soshnikov, A.: Determinantal random point fields. Russ. Math. Surv. 55, 923–975 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  48. Soshnikov, A.: The Central Limit Theorem for local linear statistics in classical compact groups and related combinatorial identities. Ann. Probab. 28, 1353–1370 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  49. Soshnikov, A.: Gaussian limit for determinantal random point fields. Ann. Probab. 30, 1–17 (2001)

    MathSciNet  Google Scholar 

  50. Spencer, T.: Random Banded and Sparse Matrices in the Oxford Handbook of Random Matrix Theory, pp. 471–488. Oxford Univ. Press, Oxford (2011)

    MATH  Google Scholar 

Download references

Acknowledgements

G. L. was supported by the grant KAW 2010.0063 from the Knut and Alice Wallenberg Foundation and by the University of Zurich Forschungskredit grant FK-17-112. I thank Tomas Berggren and Maurice Duits from which I learned about the model of Bohigas and Pato, for sharing their inspiring work with me and for the valuable discussions which followed. I also thank Mariusz Hynek for many interesting discussions, as well as the referee whose comments help to improve the structure of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gaultier Lambert.

Additional information

Communicated by Alessandro Giuliani.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Incomplete Determinantal Processes

In this appendix, we review some background material on determinantal processes and we give an alternative proof of the results of Bohigas and Pato, [9], that the incomplete process is determinantal with correlation kernel \(p_NK^N_V(z,w)\). There are many excellent surveys about determinantal processes and we refer to [11, 33, 36, 47] for further details and an overview of the main examples.

Let \({\mathfrak {X}}\) be a complete separable metric space equipped with a Radon measure \(\mu \). The configuration space \({\mathscr {Q}}({\mathfrak {X}})\) is the set of integer-valued locally finite Borel measure on \({\mathfrak {X}}\) equipped with the topology which is generated by the maps

$$\begin{aligned} {\mathscr {Q}}({\mathfrak {X}}) \ni \Xi \mapsto \Xi _A := \int _A d\Xi \end{aligned}$$

for every Borel set \(A\subseteq {\mathfrak {X}}\). A point process \({\mathbb {P}}\) is a Borel probability measure on the configuration space \({\mathscr {Q}}({\mathfrak {X}})\). A point process can be characterized by its correlation functions \((\rho _n)_{n=1}^\infty \). If it exists, \(\rho _n\) is a symmetric function on \({\mathfrak {X}}^n\) which satisfies the identity

$$\begin{aligned} {\mathbb {E}}\left[ {\Xi _{A_1} \atopwithdelims ()k_1} \cdots {\Xi _{A_\ell } \atopwithdelims ()k_\ell } \right] = \frac{1}{k_1!\cdots k_\ell !} \int _{A_1^{k_1} \times \cdots \times A_\ell ^{k_\ell }} \rho _n(x_1,\dots , x_n) d\mu ^n(x) \end{aligned}$$
(A.1)

for all compositions \(\mathbf {k}\vdash n\) and for all disjoint Borel sets \(A_1,\dots , A_\ell \subseteq {\mathfrak {X}}\). A point process is called determinantal if all its correlation functions exist and are given by

$$\begin{aligned} \rho _n(x_1,\dots , x_n) = \det _{n\times n}\big [ K(x_i, x_j) \big ] . \end{aligned}$$
(A.2)

The function \(K: {\mathfrak {X}}\times {\mathfrak {X}}\rightarrow {\mathbb {C}}\) is called the correlation kernel. For instance, given random points \((\lambda _1,\dots , \lambda _N)\) with the joint density \(G_N(x)=e^{-\beta {\mathscr {H}}^N_V(x)}/Z^N_V\) on \({\mathfrak {X}}^N\), see (1.2), the random measure \( \sum _{k=1}^N \delta _{\lambda _k}\) defines a point process and its correlation functions satisfy \(\rho _N = N! G_N\) and

$$\begin{aligned} \rho _k(x_1, \dots , x_k) = \frac{N!}{(N-k)!} \int G_N(x_1, \dots , x_N) dx_{k+1}\cdots dx_N \end{aligned}$$
(A.3)

for all \(k<N\). When \(\beta =2\), it is easy to verify that

$$\begin{aligned} G_N(x) = \frac{1}{N!} \det _{N\times N} \big [K^N_V(x_i, x_j) \big ] \end{aligned}$$

and that, by formula (A.3), the process \(\Xi \) is determinantal with the correlation kernel \(K^N_V\) given by (1.3). In general, if K is a continuous, Hermitian symmetric, function which satisfies property (2.1), then there exists a determinantal process on \({\mathfrak {X}}\) with correlation kernel K; c.f. [47, Theorem 3].

Let \(q\in (0,1)\) and \(p=1-q\). Recall that X is a Binomial random variable with parameter p and \(N\in {\mathbb {N}}\) if for all \(k \in {\mathbb {N}}_0\),

$$\begin{aligned} {\mathbb {E}}\left[ {X \atopwithdelims ()k} \right] = p^k {N \atopwithdelims ()k} . \end{aligned}$$
(A.4)

By convention, \({N \atopwithdelims ()k} = 0\) if \(k>N\). Let \(\Xi \) be a random (point) configuration and let \(\widehat{\Xi }\) be the configuration obtained after performing a Bernoulli percolation on \(\Xi \). By construction, for any disjoint Borel set \(A\subseteq {\mathfrak {X}}\), the conditional distribution of the random variable \(\widehat{\Xi }_A\) given \(\Xi \) has a Binomial distribution with parameters p and \(\Xi _A\) and it is statistically independent of \(\Xi _B\) for any Borel set B disjoint of A. By formula (A.4), this implies that

$$\begin{aligned} {\mathbb {E}}\left[ {{\widehat{\Xi }}_{A_1} \atopwithdelims ()k_1} \cdots {{\widehat{\Xi }}_{A_\ell } \atopwithdelims ()k_\ell } \bigg | \Xi _A=N_1, \dots , \Xi _A=N_\ell \right] = p^n {N_1 \atopwithdelims ()k_1} \cdots {N_\ell \atopwithdelims ()k_\ell } \end{aligned}$$

for any composition \(\mathbf {k}\vdash n\) and for all disjoint Borel sets \(A_1,\dots , A_\ell \subseteq {\mathfrak {X}}\). Hence, we obtain

$$\begin{aligned} {\mathbb {E}}\left[ {{\widehat{\Xi }}_{A_1} \atopwithdelims ()k_1} \cdots {{\widehat{\Xi }}_{A_\ell } \atopwithdelims ()k_\ell } \right] = p^n {\mathbb {E}}\left[ {\Xi _{A_1} \atopwithdelims ()k_1} \cdots {\Xi _{A_\ell } \atopwithdelims ()k_\ell } \right] \end{aligned}$$

so that, by formula (A.1), the correlation functions of the incomplete process\(\widehat{\Xi }\) are given by \(p^n \rho _n(x_1,\dots , x_n)\) for all \(n \ge 1\). In particular, we deduce from formula (A.2) that, if \(\Xi \) is a determinantal process with a correlation kernel K, then the point process \(\widehat{\Xi }\) is also determinantal with kernel pK.

Appendix B: Off-Diagonal Decay of the Correlation Kernel \(K^N_V\) in Dimension 2

In this section, we review some classical estimates for the correlation kernel (1.3) which have been used in [2] to prove the CLT (1.10). Then, we prove Lemma 3.3 and an analogous result for the cumulants of the \(\infty \)-Ginibre process. For completeness, we also give the proof of Lemma 3.2. We will use the formulation of Sect. 5 in [2] but the estimates (B.1) and (B.2) go back to the papers [7] and [1]. Suppose that the potential \(V:{\mathbb {C}}\rightarrow {\mathbb {R}}\) is real-analytic and satisfies the condition (1.1). Then, there a function \(\phi _V : {\mathbb {C}}\rightarrow {\mathbb {R}}^+\) such that \(\phi _V(z) \ge \nu \log |z|^2\) as \(|z| \rightarrow \infty \) and some constants \(C, c, \delta >0\) such that

$$\begin{aligned} \big | K_V^N(z,w) \big | \le C N e^{- c\sqrt{N} (|z-w|\wedge \delta )} , \end{aligned}$$
(B.1)

and

$$\begin{aligned} K_V^N(z,z) \le C N e^{-N \phi _V(z)} , \end{aligned}$$
(B.2)

for all \(w \in {\mathscr {S}}\) and \(z\in {\mathbb {C}}\).

Proof of Lemma 3.3

We use the convention \(z_0=z_{n+1}\). Since the kernel \(K_V^N\) is reproducing, by the Cauchy-Schwartz inequality,

$$\begin{aligned} \big | K_V^N (z,w) \big | \le \sqrt{ K_V^N (z,z) K_V^N (w,w) } , \end{aligned}$$

for all \(z, w\in {\mathbb {C}}\), so that

$$\begin{aligned} \bigg | \prod _{j=0}^{n}K_V^N(z_j,z_{j+1}) \bigg | \le \big | K_V^N(z_0,z_{1}) \big |\sqrt{K_V^N(z_0,z_{0})K_V^N(z_1,z_{1})} \prod _{j=2}^{n}K_V^N(z_j,z_j) . \end{aligned}$$

Since \(\displaystyle \int _{\mathbb {C}}K_V^N(z,z) d\mathrm {A}(z) = N\) and \(K_V^N(z,z) \le C N \) [see the estimate (B.2)], we obtain

$$\begin{aligned} \underset{|z_1-z_{n+1}|> \epsilon _N}{\int _{{\mathbb {C}}^n\times {\mathscr {S}}}} \bigg |\prod _{j=0}^n K^N_V(z_{j}, z_{j+1})\bigg |\ d\mathrm {A}^{n+1}(\mathrm {z}) \le C N^n \underset{|z_1-z_0|> \epsilon _N}{\int _{{\mathscr {S}}\times {\mathbb {C}}}} \big | K_V^N(z_0 ,z_1) \big | d\mathrm {A}(z_0) d\mathrm {A}(z_1) . \end{aligned}$$

Then, it easy to check that the estimates (B.1) and (B.2) imply that

$$\begin{aligned} \underset{|z_1-z_0|> \epsilon _N}{\int _{{\mathscr {S}}\times {\mathbb {C}}}} \big | K_V^N(z_0 ,z_1) \big | d\mathrm {A}(z_0) d\mathrm {A}(z_1) \le C N e^{-c \sqrt{N} \epsilon _N } . \end{aligned}$$

Hence, if \(\epsilon _N = \kappa N^{-1/2} \log N \) and \(\kappa \ge (n+1)/ c\), we obtain

$$\begin{aligned} \underset{|z_1-z_{n+1}|> \epsilon _N}{\int _{{\mathbb {C}}^n \times {\mathscr {S}}}} \bigg | \prod _{j=0}^n K^N_V(z_{j}, z_{j+1})\bigg |\ d\mathrm {A}^{n+1}(\mathrm {z}) = \underset{N\rightarrow \infty }{O}(N^{-1}) . \end{aligned}$$
(B.3)

Moreover, since \(\sup \big \{ |F_N(z_0, \mathrm {z})| : \mathrm {z}\in {\mathbb {C}}^{n} , N \ge N_0 \big \} \le C \mathbf {1}_{z_0 \in {\mathscr {S}}}\) by (3.6), the estimate (B.3) implies that

$$\begin{aligned}&\underset{z_0 = z_{n+1}}{\int _{{\mathbb {C}}^{n+1}}}\, F_N(\mathrm {z}) \prod _{j=0}^n K^N_V(z_{j}, z_{j+1}) d\mathrm {A}^{n+1}(\mathrm {z}) \nonumber \\&\quad = \underset{|z_1-z_{n+1}| \le \epsilon _N}{\int _{{\mathbb {C}}^n \times {\mathscr {S}}}} F_N(\mathrm {z}) \prod _{j=0}^n K^N_V(z_{j}, z_{j+1}) \ d\mathrm {A}^{n+1}(\mathrm {z}) + \underset{N\rightarrow \infty }{O}(N^{-1}) . \end{aligned}$$
(B.4)

Now, we can proceed by induction to get formula (3.7). If \({\mathscr {C}}_N = \{\mathrm {z}\in {\mathbb {C}}^{n+1} : z_{n+1} \in {\mathscr {S}}, |z_1-z_{n+1}| \le \epsilon _N \} \), the next step is to show that

$$\begin{aligned} \underset{|z_2-z_1|> \epsilon _N}{\int _{{\mathscr {C}}_N}} \bigg | \prod _{j=0}^n K^N_V(z_{j}, z_{j+1})\bigg |\ d\mathrm {A}^{n+1}(\mathrm {z}) = \underset{N\rightarrow \infty }{O}(N^{-1}) . \end{aligned}$$
(B.5)

Since the set \({\mathscr {S}}_V\) is open, there exists a compact set \({\mathscr {S}}' \subset {\mathscr {S}}_V\) such that \({\mathscr {S}}\subset {\mathscr {S}}'\) and \({\mathscr {C}}_N \subset \{\mathrm {z}\in {\mathbb {C}}^{n+1} : z_{n+1} , z_1 \in {\mathscr {S}}' \}\) when the parameter N is sufficiently large. Then, as before, we obtain

$$\begin{aligned} \underset{|z_2-z_{1}|> \epsilon _N}{\int _{{\mathscr {C}}_N}} \bigg |\prod _{j=0}^n K^N_V(z_{j}, z_{j+1})\bigg |\ d\mathrm {A}^{n+1}(\mathrm {z}) \le C N^n \underset{|z_2-z_1|> \epsilon _N}{\int _{{\mathscr {S}}'\times {\mathbb {C}}}} \big | K_V^N(z_1 ,z_2) \big | d\mathrm {A}(z_0) d\mathrm {A}(z_1) , \end{aligned}$$

and formula (B.5) also follows directly from the estimate (B.3). Hence, by formula (B.4), this implies that

$$\begin{aligned}&\underset{z_0 = z_{n+1}}{\int _{{\mathbb {C}}^{n+1}}}\, F_N(\mathrm {z}) \prod _{j=0}^n K^N_V(z_{j}, z_{j+1}) d\mathrm {A}^{n+1}(\mathrm {z}) \\&\quad = \underset{{\begin{array}{c} |z_1-z_{n+1}| \le \epsilon _N \\ |z_2-z_{1}| \le \epsilon _N \end{array}}}{\int _{{\mathbb {C}}^n \times {\mathscr {S}}}} F_N(\mathrm {z}) \prod _{j=0}^n K^N_V(z_{j}, z_{j+1}) \ d\mathrm {A}^{n+1}(\mathrm {z}) + \underset{N\rightarrow \infty }{O}(N^{-1}) . \end{aligned}$$

If we repeat this argument, we obtain (3.7). \(\square \)

Lemma 4.3

Let \(n \in {\mathbb {N}}\), \(w_0= w_{n+1} =0\), and let \(H(\mathrm {w})\) be a polynomial of degree at most 2 in the variables \(w_1,\dots , w_n, \overline{w_1},\dots , \overline{w_n}\). For any sequence \(\delta _N \ge k \rho _N^{-1/2} \sqrt{\log \rho _N}\) with \(k>0\), we have

$$\begin{aligned}&\int _{{\mathbb {C}}^n} H(\mathrm {w}) \prod _{j=0}^nK^\infty _{\rho _N}(w_{j}, w_{j+1})\ d\mathrm {A}^n(\mathrm {w}) \\&\quad = \int _{{\mathscr {A}}(0; \delta _N)} H(\mathrm {w}) \prod _{j=0}^nK^\infty _{\rho _N}(w_{j}, w_{j+1})\ d\mathrm {A}^n(\mathrm {w}) + \underset{N\rightarrow \infty }{O}(\rho _N^{1-k^2/2}) \end{aligned}$$

where the set \({\mathscr {A}}(0; \delta _N)\) is given by formula (3.5).

Proof

We will first show that

$$\begin{aligned} \underset{|w_1| > \delta _N}{\int _{{\mathbb {C}}^n}} H(\mathrm {w}) \prod _{j=0}^nK^\infty _{\rho _N}(w_{j}, w_{j+1}) \ d\mathrm {A}^n(\mathrm {w}) = \underset{N\rightarrow \infty }{O}\big ( \rho _N e^{- \rho _N \delta _N^2/2} \big ) . \end{aligned}$$
(B.6)

First, notice that if \(H =1\), since \(w_0=0\), by formula (3.14), we have

$$\begin{aligned} \underset{|w_1| > \delta _N}{\int _{{\mathbb {C}}^n}} \bigg | \prod _{j=0}^nK^\infty _{\rho _N}(w_{j}, w_{j+1})\bigg | \ d\mathrm {A}^n(\mathrm {w}) \le e^{- \rho _N \delta _N^2/2} \rho _N^{n+1} \underbrace{\int _{{\mathbb {C}}^n} \prod _{j=1}^n e^{-\rho _N |v_j|^2/2} d\mathrm {A}^n(\mathrm {v})}_{\displaystyle = \rho _N^{-n}} . \end{aligned}$$

In general, there exists a constant \(C>0\) which only depends on the polynomial H so that

$$\begin{aligned} \big | H(\mathrm {w}) \big | \le C \big \{ 1+ |w_1|^2 +\cdots +|w_n|^2 \big \} \end{aligned}$$

or

$$\begin{aligned} \big | H(\mathrm {w}) \big | \le C \big \{ 1+ |w_2-w_1|^2 +\cdots +|w_{n-1} -w_n|^2 + |w_n|^2 \big \} . \end{aligned}$$
(B.7)

Since, for any \(k=1,\dots , n\),

$$\begin{aligned}&\underset{|w_1| > \delta _N}{\int _{{\mathbb {C}}^n}}|w_k-w_{k+1}|^2 \bigg | \prod _{j=0}^nK^\infty _{\rho _N}(w_{j}, w_{j+1}) \bigg | d\mathrm {A}^n(\mathrm {w}) \\&\quad \le e^{- \rho _N \delta _N^2/2} \underbrace{ \rho _N^{n+1} \int _{{\mathbb {C}}^n} |v_k|^2 \prod _{j=1}^n e^{-\rho _N | v_{j} |^2/2} d\mathrm {A}^n(\mathrm {v})}_{\displaystyle = 1} , \end{aligned}$$

the estimate (B.6) follows directly from (B.7) and the leading contribution comes from the constant term. If we use the estimate

$$\begin{aligned} \big | H(\mathrm {w}) \big | \le C \bigg \{ 1+ |w_1|^2 + \sum _{\begin{array}{c} j=1 \\ j \ne k \end{array}}^n |w_{j+1} -w_j|^2 +|w_n|^2 \bigg \} \end{aligned}$$

instead, the same argument shows that for any \(k= 1,\dots n\),

$$\begin{aligned} \int \limits _{|w_k -w_{k+1}| > \delta _N } H(\mathrm {w}) \prod _{j=0}^nK^\infty _{\rho _N}(w_{j}, w_{j+1}) \ d\mathrm {A}^n(\mathrm {w}) = \underset{N\rightarrow \infty }{O}\big ( \rho _N e^{- \rho _N \delta _N^2/2} \big ) . \end{aligned}$$

Hence, the Lemma follows from applying a union bound and from the choice of the sequence \(\delta _N\). \(\square \)

Proof of Lemma 3.2

The map \((z, w) \mapsto \Psi (z,w)\) is bi-holomorphic in a neighborhood of \((x_0, \overline{x_0})\), so there exists \(0<\epsilon <1\) such that for all \(|u|, |v| \le \epsilon \),

$$\begin{aligned} \Psi (x_0 + u, \overline{x_0} + v) = \sum _{k, j \ge 0} a_{kj} u^k v^j . \end{aligned}$$

By definition, \(\overline{\Psi (z,w)} = \Psi ({\overline{w}},{\overline{z}})\), so that the coefficients of the previous power series are Hermitian-symmetric: \(a_{kj} = \overline{a_{jk}}\) for all \(k, j \ge 0\). Moreover, by definition, we have

$$\begin{aligned} a_{11} = \partial _z \overline{\partial }_z V |_{z=x_0} = \Delta V (x_0) = \frac{b_0(x_0, \overline{x_0})}{2} . \end{aligned}$$
(B.8)

Let

$$\begin{aligned} {\mathfrak {h}}(u) = i \sum _{k>0} \big \{ a_{k0} u^k - a_{0k} {\overline{u}}^k \big \} = -2 \mathfrak {I}\bigg \{ \sum _{k>0} a_{k0} u^k \bigg \} . \end{aligned}$$

Since \(V(x_0 + u) = \Psi (x_0 + u , \overline{x_0} + {\overline{u}} )\), we see that for any \(|u|, |v| \le \epsilon \),

$$\begin{aligned}&2\Psi (x_0 + u, \overline{x_0} +{\overline{v}}) -V(x_0+u)- V(x_0+v) \\&\quad = - i\{ {\mathfrak {h}}(u) - {\mathfrak {h}}(v)\} + a_{11} \big ( 2 u {\overline{v}} - |{\overline{u}}|^2 -|{\overline{v}}|^2 \big ) + O( \epsilon ^3) . \end{aligned}$$

By formula (3.1), this implies that for any \(|u|, |v| \le \epsilon _N = \log (N^\kappa ) N^{-1/2}\),

$$\begin{aligned} \frac{B^N(x_0 + u , x_0 +v)e^{i N {\mathfrak {h}}(u)}}{e^{i N {\mathfrak {h}}(v)}}= N b_0(x_0, \overline{x_0}) e^{N a_{11} ( 2 u {\overline{v}} - |{\overline{u}}|^2 -|{\overline{v}}|^2) } \left\{ 1 + \underset{N\rightarrow \infty }{O}\big ( (\log N)^{2}\epsilon _N \big ) \right\} . \end{aligned}$$

By formula (B.8) and the definition of the \(\infty \)-Ginibre kernel, it completes the proof. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lambert, G. Incomplete Determinantal Processes: From Random Matrix to Poisson Statistics. J Stat Phys 176, 1343–1374 (2019). https://doi.org/10.1007/s10955-019-02345-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-019-02345-w

Keywords

Navigation