Skip to main content
Log in

Bayesian analysis of multiple thresholds autoregressive model

  • Original Paper
  • Published:
Computational Statistics Aims and scope Submit manuscript

Abstract

Bayesian analysis of threshold autoregressive (TAR) model with various possible thresholds is considered. A method of Bayesian stochastic search selection is introduced to identify a threshold-dependent sequence with highest probability. All model parameters are computed by a hybrid Markov chain Monte Carlo method, which combines Metropolis–Hastings algorithm and Gibbs sampler. The main innovation of the method introduced here is to estimate the TAR model without assuming the fixed number of threshold values, thus is more flexible and useful. Simulation experiments and a real data example lend further support to the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Brooks C, Garrett I (2002) Can we explain the dynamics of the UK FTSE 100 stock and stock index futures markets. Appl Financ Econ 12:25–31

    Article  Google Scholar 

  • Chen CWS (1998) A Bayesian analysis of generalized threshold autoregressive models. Stat Probab Lett 40:15–22

    Article  MathSciNet  MATH  Google Scholar 

  • Chen CWS, Gerlach R, So MKP (2008a) Bayesian model selection for heterroskedastic models. Adv Econom 25:567–594

    Article  MATH  Google Scholar 

  • Chen CWS, Lin EMH, Liu FC, Gerlach R (2008b) Bayesian estimation for parsimonious threshold autoregressive models in R. R J 8:26–33

    Google Scholar 

  • Chen CWS, Gerlach R, Lin AMH (2010) Falling and explosive, dormant and rising markets via multiple-regime financial time series models. Appl Stoch Models Bus Ind 26:28–49

    Article  MathSciNet  MATH  Google Scholar 

  • Chen CWS, Lee JC (1995) Bayesian inference of threshold autoregressive models. J Time Ser Anal 16:483–492

    Article  MathSciNet  MATH  Google Scholar 

  • Chib S, Greenberg E (1995) Understanding the Metropolis–Hastings algorithm. Am Stat 49:327–335

    Google Scholar 

  • Geweke J, Terui N (1993) Bayesian threshold autoregressive models for nonlinear time series. J Time Ser Anal 14:441–454

    Article  MathSciNet  MATH  Google Scholar 

  • Hansen BE (2011) Threshold autoregression in economics. Stat Interface 4:123–127

    Article  MathSciNet  Google Scholar 

  • Ismail MA, Charif HA (2003) Bayesian Inference for threshold moving average models. METRON 1:119–132

    MathSciNet  Google Scholar 

  • Lavielle M, Moulines E (2000) Least squares estimation of an unknown number of shifts in a time series. J Time Ser Anal 21(1):33–59

    Article  MathSciNet  MATH  Google Scholar 

  • Mcculloch RE, Tsay RS (1993a) Bayesian analysis of threshold autoregressive processes with a random number of regimes. Computing science and statistics. In: Proceedings of the 25th symposium on the interface, Fairfax Station, VA: Interface Foundation of North America, pp 253–262

  • Mcculloch RE, Tsay RS (1993b) Bayesian inference and prediction for mean and variance shifts in autoregressive time series. J Am Stat Assoc 88:968–978

    Article  MATH  Google Scholar 

  • Sáfadi T, Morettin PA (2000) Bayesian analysis of threshold autoregressive moving average models. Sankyã 62:353–371

    MathSciNet  MATH  Google Scholar 

  • So MKP, Chen CWS, Chen MT (2005) A Bayesian threshold nonlinearity test in financial time series. J Forecast 24:61–75

    Article  MathSciNet  Google Scholar 

  • Tong H (1978) On a threshold model. In: Chen CH (ed) Pattern recognition and signal processing. Sijthoff and Noordhoff, Amsterdam, pp 101–141

    Google Scholar 

  • Tong H (1983) Threshold model in non-linear time series analysis. Lecture notes in statistics, vol 21. Springer, Berlin

    Book  Google Scholar 

  • Tong H (1990) Non-linear time series: a dynamical system approach. Oxford University Press, Oxford

    MATH  Google Scholar 

  • Tong H, Lim KS (1980) Threshold autoregressions, limit cycles, and data. J R Stat Soc 42:245–292

    MATH  Google Scholar 

  • Tsay RS (1989) Testing and modeling threshold autoregressive process. J Am Stat Assoc 84:231–240

    Article  MATH  Google Scholar 

  • Tsay RS (2005) Analysis of financial time series, 2nd edn. Wiley, Hoboken

    Book  MATH  Google Scholar 

Download references

Acknowledgments

The authors thank the editors and the referee for their constructive comments and valuable suggestions. This paper is partially supported by the EPSRC Bridging-the-Gaps project and the starter grant from the Faculty of Science, University of Strathclyde. The authors J. S. Liu and Q. Xia are supported by National Science Foundation of China (No. 11171117), National Science Foundations of Guangdong Province of China (Nos. 2016A030313414, S2011010002371) and National statistical plan for scientific research project of China (No. 2015LZ48).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinshan Liu.

Appendices

Appendix 1: The proof of Theorem 1

The conditional posterior distribution of \((\gamma ,d)\) given \((Y,\sigma ^2)\) is

$$\begin{aligned} f\left( \gamma ,d|Y,\sigma ^2\right)\propto & {} \int f\left( \Theta ,\gamma ,\sigma ^2,d|Y\right) d\Theta \nonumber \\\propto & {} \pi \left( \sigma ^2|\gamma ,d\right) \pi (\gamma |d)\int L\left( \Theta ,\gamma ,\sigma ^2,d|Y\right) \pi (\Theta |\gamma ,d)d\Theta ,\qquad \quad \end{aligned}$$
(5.1)

where \(L(\Theta ,\gamma ,\sigma ^2,d|Y)\) is defined by (2.4) and

$$\begin{aligned}&L\left( \Theta ,\gamma ,d|Y\right) \pi (\Theta |\gamma ,d)\nonumber \\&\quad \propto \prod \limits _{k=1}^{K_{\gamma }} \left( \sigma _k^2\right) ^{-n_k/2} \exp \left\{ -{1\over 2\sigma _k^2} \left( Y_k^*-X_k^{*}\Theta _k\right) ' \left( Y_k^*-X_k^{*}\Theta _k\right) \right\} \nonumber \\&\qquad \times \prod \limits _{k=1}^{K_{\gamma }}(2\pi )^{-\left( q_k+1\right) /2}|V_k|^{1\over 2}\exp \left\{ -{1\over 2}\left( \Theta _k-\Theta _{k0}\right) 'V_k\left( \Theta _k-\Theta _{k0}\right) \right\} . \end{aligned}$$
(5.2)

Let \(\Theta _k^*,V_k^*\) and \(\hat{\Theta }_k\) be defined as before, then we have

$$\begin{aligned}&{1\over \sigma _k^2} \left( Y_k^*-X_k^{*}\Theta _k\right) ' \left( Y_k^*-X_k^{*}\Theta _k\right) + \left( \Theta _k -\Theta _{k0}\right) 'V_k \left( \Theta _k-\Theta _{k0}\right) \nonumber \\&\quad = \left[ Y_k^*-X_k^{*}\hat{\Theta }_k+X_k^{*} \left( \hat{\Theta }_k-\Theta _k \right) \right] ' \left[ Y_k^*- X_k^{*}\hat{\Theta }_k+X_k^{*}\left( \hat{\Theta }_k-\Theta _k\right) \right] \nonumber \\&\qquad + \,\left( \Theta _k-\Theta _{k0}\right) 'V_k\left( \Theta _k-\Theta _{k0}\right) \nonumber \\&\quad ={1\over \sigma _k^2} \left[ \left( Y_k^*-X_k^*\hat{\Theta }_k\right) ' \left( Y_k^*-X_k^*\hat{\Theta }_k\right) + \left( \hat{\Theta }_k-\Theta _k\right) ' \left( X_k^{*'} X_k^{*}\right) \left( \hat{\Theta }_k-\Theta _k\right) \right] \nonumber \\&\qquad +\,\left( \Theta _k-\Theta _{k0}\right) 'V_k\left( \Theta _k-\Theta _{k0}\right) \nonumber \\&\quad ={1\over \sigma _k^2}\left[ \left( Y_k^*-X_k^*\hat{\Theta }_k\right) ' \left( Y_k^*-X_k^*\hat{\Theta }_k\right) +\hat{\Theta }_k'X_k^{*'} X_k^{*}\hat{\Theta }_k\right] +\Theta _{k0}'V_k\Theta _{k0}\nonumber \\&\qquad +\,\left( \Theta _k-\Theta _k^*\right) 'V_k^* \left( \Theta _k-\Theta _k^*\right) -\Theta _k^{*'}V_k^*\Theta _k^*\nonumber \\&\quad ={1\over \sigma _k^2}Y_k^{*'}Y_k^*-\Theta _k^{*'}V_k^*\Theta _k^*+ \Theta _{k0}'V_k\Theta _{k0}+ \left( \Theta _k-\Theta _k^*\right) ' V_k^*\left( \Theta _k-\Theta _k^*\right) \nonumber \\&\quad =S_k^{*2}+\Theta _{k0}'V_k\Theta _{k0}+ \left( \Theta _k-\Theta _k^*\right) ' V_k^*\left( \Theta _k-\Theta _k^*\right) , \end{aligned}$$
(5.3)

where \(S_k^{*2}\) is defined by (2.12). Thus the conditional posterior distribution (5.1) reduces to

$$\begin{aligned} f\left( \gamma ,d|Y,\sigma ^2\right)\propto & {} \prod \limits _{k=1}^{K_{\gamma }} \left( \sigma _k^2\right) ^{-n_k/2}(2\pi )^{-\left( q_k+1\right) /2}|V_k|^{1\over 2}\exp \left\{ -{1\over 2}\left( S_k^{*2}+\Theta _{k0}'V_k\Theta _{k0}\right) \right\} \nonumber \\&\times \,\pi \left( \sigma ^2|\gamma ,d\right) \pi (\gamma |d)\nonumber \\\propto & {} \prod \limits _{k=1}^{K_{\gamma }}\left( \sigma _k^2\right) ^{-\left( n_k+\upsilon _k+2\right) /2}(2\pi )^{-\left( q_k+1\right) /2}|V_k|^{1\over 2}\nonumber \\&\times \exp \left\{ -{1\over 2}\sum \limits _{k=1}^{K_{\gamma }} \left( S_k^{*2}+\Theta _{k0}'V_k\Theta _{k0}+{\upsilon _k\lambda _k\over \sigma _k^2}\right) \right\} \left( \lambda \over 1-\lambda \right) ^{K_{\gamma }}\nonumber \\\propto & {} \exp \left\{ -U\left( \gamma ,d|Y,\sigma ^2\right) \right\} , \end{aligned}$$
(5.4)

where

$$\begin{aligned} U(\gamma ,d|Y)={1\over 2}\sum \limits _{k=1}^{K_{\gamma }} \left( S_k^{*2}+\omega _k\right) +\beta K_{\gamma }, \end{aligned}$$

in which \(\omega _k\) and \(\beta \) are defined as in (2.14). The proof of Theorem 1 is completed.

Appendix 2: The proof of equation (2.17)

If \(\sigma _1^2=\cdots =\sigma _k^2=\sigma ^2\) and the prior distribution of \(\sigma ^2\) is \(IG(\upsilon /2,\upsilon \lambda /2)\), then conditional posterior distribution of \((\gamma ,d)\) given \((Y,\sigma ^2)\) is

$$\begin{aligned} f\left( \gamma ,d|Y,\sigma ^2\right)\propto & {} \int f\left( \Theta ,\gamma ,\sigma ^2,d|Y\right) d\Theta \nonumber \\\propto & {} \pi (\gamma |d)\int L\left( \Theta ,\gamma ,\sigma ^2,d|Y\right) \pi (\Theta |\gamma ,d)d\Theta , \end{aligned}$$
(5.5)

where \(L(\Theta ,\gamma ,\sigma ^2,d|Y)\) is defined by (2.15), \(\pi (\Theta |\gamma ,d)\) is as before. Then it follows from (5.3) the conditional posterior distribution (5.5) reduces to

$$\begin{aligned} f\left( \gamma ,d|Y,\sigma ^2\right)\propto & {} \prod \limits _{k=1}^{K_{\gamma }} (2\pi )^{-\left( q_k+1\right) /2}|V_k|^{1\over 2}\exp \left\{ -{1\over 2}\left( S_k^{*2}+\Theta _{k0}'V_k\Theta _{k0}\right) \right\} \pi (\gamma |d)\nonumber \\\propto & {} \prod \limits _{k=1}^{K_{\gamma }}(2\pi )^{-\left( q_k+1\right) /2}|V_k|^{1\over 2}\exp \left\{ -{1\over 2}\left( S_k^{*2}+\Theta _{k0}'V_k\Theta _{k0}\right) \right\} \left( \lambda \over 1-\lambda \right) ^{K_{\gamma }}\nonumber \\\propto & {} \exp \left\{ -U\left( \gamma ,d|Y,\sigma ^2\right) \right\} , \end{aligned}$$
(5.6)

where

$$\begin{aligned} U(\gamma ,d|Y)={1\over 2}\sum \limits _{k=1}^{K_{\gamma }} \left( S_k^{*2}+\omega _k\right) +\beta K_{\gamma }, \end{aligned}$$

in which \(S_k^{*2}={1\over \sigma ^2}Y_k^{*'}Y_k^*-\Theta _k^{*'}V_k^*\Theta _k^*\), \(\omega _k\) is defined by (2.17) and \(\beta \) is defined as in (2.14). The proof is completed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, J., Xia, Q. & Liu, J. Bayesian analysis of multiple thresholds autoregressive model. Comput Stat 32, 219–237 (2017). https://doi.org/10.1007/s00180-016-0673-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00180-016-0673-3

Keywords

Navigation