Skip to main content

Advertisement

Log in

Causal dynamic effects in regional systems of technological activities: a SVAR approach

  • Special Issue Paper
  • Published:
The Annals of Regional Science Aims and scope Submit manuscript

Abstract

This paper analyzes the causal relationships in regional technological systems within a structural vector autoregression framework. Applying a data-driven independent component analysis, it shows how the regional dynamics of economic, research, innovation and educational activities affect each other instantaneously and over time. By matching differently classified data on employees, patents and graduates, the analysis is based on a unique database which embraces multi-dimensional aspects for five clearly separated industries. The findings on how industry specific growth processes unfold are explained by referring to the type of industry and its knowledge base. For instance, it is found that more engineering-oriented industries like machine tools show a success-driven pattern, whereas science-based industries show a stronger dependence on universities. Such knowledge on the causal relations is of utmost relevance to the design and implementation of policy instruments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. In case of non-normal distributed random variables, this requirement is stronger than linear uncorrelatedness (Moneta et al. 2013).

  2. The named authors also provide an implementation of the algorithm for R, which was adapted for the use in this paper (http://www.cs.helsinki.fi/u/entner/VARLiNGAM).

  3. For statistical reasons, the number of R&D employees is subtracted from Empl, because they build their own variable (RD).

  4. Using Moran’s I test statistics, spatial autocorrelation in the growth rates variables was not found to be present.

  5. The current version is an update of the concordance originally published by Schmoch et al. (2003) and was obtained directly from the author. For a full list see Brenner and Schlump (2013).

  6. The bivariate correlation coefficients between the growth variables \(\tilde{\hbox {g}}_{r,i,t}\) are all below the threshold of 0.70 and, except for the pair Empl and RD, tend to be rather small. Hence, multicollinearity is not an issue and the variables seem to reflect different facets of regional economic development.

  7. To ensure statistical reliability, growth events which are based on less than five units of their corresponding level variable are excluded from the analysis. An unbalanced panel is possible, unless in one single region-year the values for all variables are available (Coad et al. 2012).

  8. We thank Alex Coad for pointing this out.

References

  • Alecke B, Mitze T, Untiedt G (2010) Internal migration, regional labour market dynamics and implications for German east–west disparities: results from a panel VAR. Jahr für Reg wiss 30:159–189

    Article  Google Scholar 

  • Amaral L, Gopikrishnan P, Plerou V, Stanley E (2001) A model for the growth dynamics of economic organizations. Phys A 299:127–136

    Article  MATH  Google Scholar 

  • Angrist J, Pischke J (2008) Mostly harmless econometrics: an empiricist’s companion. Princeton University Press, New Jersey

    Google Scholar 

  • Asheim B, Gertler M (2006) The geography of innovation: regional innovation systems. In: Fagerberg J, Mowery D, Nelson R (eds) The Oxford handbook of innovation. Oxford University Press, Oxford, pp 291–317

  • Asheim B (2007) Differentiated knowledge bases and varieties of regional innovation systems. Innov Eur J Soc Sci Res 20:223–241

    Article  MathSciNet  Google Scholar 

  • Autio E (1998) Evaluation of RTD in regional systems of innovation. Eur Plan Stud 6:131–140

    Article  Google Scholar 

  • Bade F (1987) Regionale Beschäftigungsentwicklung und produktionsorientierte Dienstleistungen. Sonderheft, DIW Berlin, p 143

    Google Scholar 

  • Blanchard OJ, Katz LF (1992) Regional evolutions. Brookings Pap Econ Act 1:1–61

  • Bilbao-Osorio B, Rodriguez-Pose A (2004) Firm R&D to innovation and economic growth in the EU. Growth Change 35:434–455

    Article  Google Scholar 

  • Binder J, Schwengler B (2006) Neuer Gebietszuschnitt der Arbeitsmarktregionen im Raum Berlin und Brandenburg. Kritische Überprüfung der bisher gültigen Arbeitsmarktregionen und Vorschläge für einen Neuzuschnitt. IAB-Forschungsbericht 4/2006, Nürnberg

  • Bogliacini F, Pianta M (2010) Innovation and employment: a reinvestigation using revised Pavitt classes. Res Policy 39:799–809

    Article  Google Scholar 

  • Bottazzi G, Coad A, Jacoby N, Secchi A (2011) Corporate growth and industrial dynamics: evidence from French manufacturing. Appl Econ 43:103–116

    Article  Google Scholar 

  • Bottazzi G, Secchi A (2011) A new class of asymmetric exponential power densities with applications to economics and finance. Ind Corp Change 20:991–1030

    Article  Google Scholar 

  • Bottazzi G, Secchi A, Tamagni F (2014) Financial constraints and firm dynamics. Small Bus Econ 42:99–116

    Article  Google Scholar 

  • Breinlich H, Ottaviano G, Temple J (2014) Regional growth and regional decline. In: Aghion P, Durlauf S (eds) Handbook of economic growth, 2nd edn. North-Holland, The Netherlands, pp 683–779

    Google Scholar 

  • Brenner T, Broekel T (2011) Methodological issues in measuring innovation performance of spatial units. Ind Innov 18:7–37

    Article  Google Scholar 

  • Brenner T, Schlump C (2013) Universities, public research and regional innovation output: an empirical study of 19 technologies in Germany. Marburg Working Pap on Innov and Sp 03.13

  • Breschi S, Malerba F, Orseniga L (2000) Technological regimes and Schumpeterian patterns of innovation. Econ J 110:388–410

    Article  Google Scholar 

  • Broekel T (2007) A concordance between industries and technologies: matching the technological fields of the Patentatlas to the German Industry Classification. Jena Econ Res Pap 2007-041

  • Buenstorf G, Guenther C (2011) No place like home? Relocation, capabilities, and firm survival in the German machine tool industry after World War II. Ind Corp Change 20:1–28

    Article  Google Scholar 

  • Buerger M, Broekel T, Coad A (2012) Regional dynamics of innovation—investigating the co-evolution of patents, R&D, and employment. Reg Stud 46:565–582

    Article  Google Scholar 

  • Cameron G (1998) Innovation and growth: a survey of the empirical evidence. Working paper. Nuffield College, Oxford University

  • Capello R, Lenzi C (2012) Innovation and employment dynamics in European regions. Int Reg Sci Rev 36:322–353

    Article  Google Scholar 

  • Carlsson B (ed) (1997) Technological systems and industrial dynamics. Kluwer, Boston

    Google Scholar 

  • Carlsson B, Jacobsson S, Holmen M, Rickne A (2002) Innovation systems: analytical and methodological issues. Res Policy 31:233–245

    Article  Google Scholar 

  • Coad A (2012) Firms as bundles of discrete resources - towards an explanation of the exponential distribution of firm growth rates. East Econ J 38:189–209

  • Coad A (forthcoming) The meso-level: structural persistency. In: Cantner U, Guerzoni M (eds) Handbook on industrial dynamics and evolutionary economics. Edward Elgar, Cheltenham

  • Coad A, Binder M (2014) Causal linkages between work and life satisfaction and their determinants in a structural VAR approach. Econ Lett 124 (2):263–268

  • Coad A, Cowling M, Siepel J (2012) Growth processes of high-growth firms in the UK. Nesta working paper no. 12/10

  • Coad A, Rao R (2008) Innovation and firm growth in high-tech sectors: a quantile regression approach. Res Policy 37:633–648

    Article  Google Scholar 

  • Cooke P, Uranga MG, Etxebarria G (1997) Regional innovation systems: institutional and organisational dimensions. Res Policy 26:475–491

    Article  Google Scholar 

  • Cooke P, Heidenreich M, Braczyk H-J (eds) (2004) Regional innovation systems, 2nd edn. Routledge, London

    Google Scholar 

  • Costanza R, Wainger L, Folke C, Mäler K-G (1993) Modeling complex ecological economic systems. BioScience 43:545–555

    Article  Google Scholar 

  • Crescenzi R (2005) Innovation and regional growth in the enlarged Europe: the role of local innovative capabilities, peripherality, and education. Growth Change 36:471–507

    Article  Google Scholar 

  • Dachs B, Peters B (2014) Innovation, employment growth, and foreign ownership of firms: a European perspective. Res Policy 43:214–232

    Article  Google Scholar 

  • Dasgupta M, Mishra S (2004) Least absolute deviation estimation of linear econometric models: a literature review. MPRA paper 1781

  • Demiralp S, Hoover K (2003) Searching for the causal structure of a vector autoregression. Oxf Bull Econ Stat 65:745–767

    Article  Google Scholar 

  • Dosi G (1988) Sources, procedures, and microeconomic effects of innovation. J Econ Lit 26:1120–1171

    Google Scholar 

  • Durlauf S (2001) Manifesto for a growth econometrics. J Econ 100:65–69

    Article  MATH  MathSciNet  Google Scholar 

  • Duschl M, Brenner T (2013) Characteristics of regional industry-specific employment growth rates’ distributions. Pap Reg Sci 92:249–270

    Google Scholar 

  • Duschl M, Scholl T, Brenner T, Luxen D, Raschke F (2014) Industry-specific firm growth and agglomeration. Reg Stud. doi:10.1080/00343404.2013.861059

  • Dutz M, Kessides I, O’Connell S, Willig R (2011) Competition and innovation-driven inclusive growth. The World Bank: policy research working paper no. 5852

  • Fagiolo G, Napoletano M, Roventini A (2008) Are output growth-rate distributions fat-tailed? Some evidence from OECD countries. J Appl Econ 23:639–669

    Article  MathSciNet  Google Scholar 

  • Falck O, Guenther C, Heblich S, Kerr W (2013) From Russia with love: the impact of relocated firms on incumbent survival. J Econ Geogr 13:419–449

    Article  Google Scholar 

  • Finardi U (2011) Time relations between scientific production and patenting of knowledge: the case of nanotechnologies. Scientometrics 89:37–50

    Article  Google Scholar 

  • Fritsch M, Slavtchev V (2007) Universities and innovation in space. Ind Innov 14:201–218

    Article  Google Scholar 

  • Fritsch M, Slavtchev V (2011) Determinants of the efficiency of regional innovation systems. Reg Stud 45(7):905–918

  • Fritsche U, Logeay C (2002) Structural unemployment and the output gap in Germany: evidence from a SVAR analysis within a hysteresis framework. DIW-Diskussionspapiere 312

  • Freeman C (1988) Japan: a new national system of innovation. In: Dosi G et al (eds) technical change and economic theory. Francis Pinter, London, pp 330–348

    Google Scholar 

  • Garnsey E, Stam E, Heffernan P (2006) New firm growth: exploring processes and paths. Ind Innov 13:1–20

    Article  Google Scholar 

  • Gottschalk J (2001) An Introduction into the SVAR methodology: identification, interpretation and limitations of SVAR models. Kiel working paper no. 1072

  • Gretton A, Györfi L (2010) Consistent nonparametric tests of independence. J Mach Learn Res 11:1391–1423

    MATH  MathSciNet  Google Scholar 

  • Güloglu B, Tekin RB (2012) A panel causality analysis of the relationship among research and development, innovation, and economic growth in high-income OECD countries. Eurasian Econ Rev 2:32–47

    Google Scholar 

  • Hasan I, Tucci CL (2010) The innovation-economic growth nexus: global evidence. Res Policy 39:1264–1276

    Article  Google Scholar 

  • Hoyer P, Janzing D, Mooji J, Peters J, Schölkopf B (2009) Nonlinear causal discovery with additive noise models. Adv Neural Inf Process Syst 21:689–696

    Google Scholar 

  • Hyvärinen A (1999) Fast and robust fixed-point algorithms for independent component analysis. IEEE Trans Neural Netw 10:626–634

    Article  PubMed  Google Scholar 

  • Hyvärinen A (2013) Independent component analysis: recent advances. Philos Trans R Soc A 371:1–19

    Google Scholar 

  • Hyvärinen A, Oja E (2000) Independent component analysis: algorithms and applications. Neural Netw 13:411–430

    Article  PubMed  Google Scholar 

  • Hyvärinen A, Zhang K, Shimizu S, Hoyer P (2010) Estimation of a structural vector autoregression model using non-gaussianity. J Mach Learn Res 11:1709–1731

    MATH  MathSciNet  Google Scholar 

  • Kafouros MI, Wang C (2008) The role of time in assessing the economic effects of R&D. Ind Innov 15:233–251

    Article  Google Scholar 

  • Kline P, Moretti E (2014) Local economic development, agglomeration economies, and the big push: 100 years of evidence from the tennessee valley authority. Quart J Econ 129:275–331

    Article  Google Scholar 

  • Kuersteiner G (2008) Granger-Sims causality. In: Durlauf S, Blume L (eds) The new Palgrave dictionary of economics, 2nd edn. Palgrave Macmillan. doi:10.1057/9780230226203.0665

  • Lacerda G, Spirtes P, Ramsey J, Hoyer P (2008) Discovering cyclic causal models by independent components analysis. In: Proceedings of the 24th conference on uncertainty in artificial intelligence

  • Lucas R (1988) On the mechanics of economic development. J Monet Econ 1:3–42

    Article  Google Scholar 

  • Lundvall B-A (1988) innovation as an interactive process: from user-supplier interaction to the national system of innovation. In: Dosi G et al (eds) Technological change and economic theory. Francis Pinter, London, pp 349–369

    Google Scholar 

  • Lütkepohl H (2003) Vector Autoregression. In: Baltagi B (ed) A companion to theoretical econometrics. Blackwell, Malden, pp 678–699

    Chapter  Google Scholar 

  • Maasoumi E, Racine F, Stengos T (2007) Growth and convergence: a profile of distribution dynamics and mobility. J Econ 136:483–508

    Article  MathSciNet  Google Scholar 

  • Madsen JB (2008) Semi-endogenous versus Schumpeterian growth models: testing the knowledge production function using international data. J Econ Growth 13:1–26

    Article  MATH  MathSciNet  Google Scholar 

  • Malerba F (2002) Sectoral systems of innovation and production. Res Policy 31:247–264

    Article  Google Scholar 

  • Mairesse J, Mohnen P (2005) The importance of R&D for innovation: a reassessment using French survey data. J Technol Transf 30:183–197

    Article  Google Scholar 

  • McKelvey B, Andriani P (2005) Why Gaussian statistics are mostly wrong for strategic organization. Strateg Organ 3:219–228

    Article  Google Scholar 

  • Mohr H (2002) Räumliche Mobilität von Hochschulabsolventen. In: Bellmann L, Velling J (eds) Arbeitsmärkte für Hochqualifizierte. IAB, Nürnberg, pp 249–281

    Google Scholar 

  • Moneta A, Entner D, Hoyer P, Coad A (2013) Causal inference by independent component analysis: theory and application. Oxf Bull Econ Stat 75:705–730

    Article  Google Scholar 

  • Murray M (2006) Avoiding invalid instruments and coping with weak instruments. J Econ Persp 20:111–132

    Article  Google Scholar 

  • Myrdal G (1959) Economic theory and under-developed regions. Gerald Duckworth & Co, London

    Google Scholar 

  • Nelson RR (1988) National systems of innovation: preface and institutions supporting technical change in the United States. In: Dosi G et al (eds) Technological change and economic theory. Francis Pinter, London, pp 309–329

    Google Scholar 

  • Nichols A (2007) Causal inference with observational data. Stata J 7:507–541

    Google Scholar 

  • Pack H (1994) Endogenous growth theory: intellectual appeal and empirical shortcomings. J Econ Perspect 8:55–72

    Article  Google Scholar 

  • Partridge M, Rickman D (2003) The waxing and waning of regional economies: the chicken-egg question of jobs versus people. J Urban Econ 53:76–97

    Article  Google Scholar 

  • Pavitt K (1984) Sectoral patterns of technical change: towards a taxonomy and a theory. Res Policy 13:343–373

    Article  Google Scholar 

  • Pearl J (2009) Causal inference in statistics: an overview. Stat Surv 3:96–146

    Article  MATH  MathSciNet  Google Scholar 

  • Rammer C, Köhler C (2012) Innovationsverhalten der Unternehmen in Deutschland 2010. Studien zum deutschen Innovationssystem, Nr. 6-2012

  • Reiersol O (1950) Identifiability of a linear relation between variables which are subject to error. Econometrica 18:375–389

    Article  MathSciNet  Google Scholar 

  • Rodríguez-Pose A, Crescenzi R (2008) Research and development, spillovers, innovation systems, and the genesis of regional growth in Europe. Reg Stud 42:51–67

    Article  Google Scholar 

  • Schmoch U, Laville F, Patel P, Frietsch R (2003) Linking technology areas to industrial sectors. Final Report to the European Commission, DG Research

  • Shimizu S (2014) Estimation of data generating processes using SEM. https://sites.google.com/site/sshimizu06/home/lingampapers. Accessed 28 Aug 2014

  • Shimizu S, Hoyer P, Hyvärinen A, Kerminen A (2006) A linear non-gaussian acyclical model for causal discovery. J Mach Learn Res 7:2003–2030

    MATH  MathSciNet  Google Scholar 

  • Sims C (1980) Macroeconomics and reality. Econometrica 48:1–48

    Article  Google Scholar 

  • Sims CA (1987) Vector autoregressions and realtiy - comment. J Bus Econ Stat 5(4):443–449

  • Smith K (2005) Measuring innovation. In: Fagerberg J, Mowery D, Nelson R (eds) The Oxford handbook of innovation. Oxford University Press, Oxford, pp 148–177

    Google Scholar 

  • Stock J, Watson M (2001) Vector autoregression. J Econ Perspect 15:101–115

    Article  Google Scholar 

  • Storper M, Scott A (2009) Rethinking human capital, creativity and urban growth. J Econ Geogr 9:147–167

    Article  Google Scholar 

  • Vega S, Elhorst J (2013) Modelling regional labour market dynamics in space and time. Pap Reg Sci. doi:10.1111/pirs.12018

  • Winter S (1984) Schumpeterian competition in alternative technological regimes. J Econ Behav Organ 5:287–320

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Brenner.

Appendix

Appendix

See Fig. 4.

Fig. 4
figure 4

Frequency distribution of alternative causal orderings resulting from the bootstrapping analysis \((n = 500)\). The number indicate the ordering of the variables, with 1 = Empl, 2 = RD, 3 = Pat and 4 = Grad

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brenner, T., Duschl, M. Causal dynamic effects in regional systems of technological activities: a SVAR approach. Ann Reg Sci 55, 103–130 (2015). https://doi.org/10.1007/s00168-015-0678-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00168-015-0678-9

JEL Classification

Navigation