Skip to main content

Advertisement

Log in

Modelling of OGTT curve identifies 1 h plasma glucose level as a strong predictor of incident type 2 diabetes: results from two prospective cohorts

  • Article
  • Published:
Diabetologia Aims and scope Submit manuscript

Abstract

Aims/hypothesis

The relevance of the OGTT in predicting type 2 diabetes is unclear. We assessed the performance of 14 OGTT glucose traits in type 2 diabetes prediction.

Methods

We studied 2,603 and 2,386 Europeans from the Botnia study and Malmö Prevention Project (MPP) cohorts with baseline OGTT data. Over a follow-up period of 4.94 years and 23.5 years, 155 (5.95%) and 467 (19.57%) participants, respectively, developed type 2 diabetes. The main outcome was incident type 2 diabetes.

Results

One-hour plasma glucose (1h-PG) was a fair/good predictor of incident type 2 diabetes in the Botnia study and MPP (AUC for receiver operating characteristic [AUCROC] 0.80 [0.77, 0.84] and 0.70 [0.68, 0.73]). 1h-PG alone outperformed the prediction model of multiple clinical risk factors (age, sex, BMI, family history of type 2 diabetes) in the Botnia study and MPP (AUCROC 0.75 [0.72, 0.79] and 0.67 [0.64, 0.70]). The same clinical risk factors added to 1h-PG modestly increased prediction for incident type 2 diabetes (Botnia, AUCROC 0.83 [0.80, 0.86]; MPP, AUCROC 0.74 [0.72, 0.77]). 1h-PG also outperformed HbA1c in predicting type 2 diabetes in the Botnia cohort. A 1h-PG value of 8.9 mmol/l and 8.4 mmol/l was the optimal cut-point for initial screening and selection of high-risk individuals in the Botnia study and MPP, respectively, and represented 30% and 37% of all participants in these cohorts. High-risk individuals had a substantially increased risk of incident type 2 diabetes (OR 8.0 [5.5, 11.6] and 3.8 [3.1, 4.7]) and captured 75% and 62% of all incident type 2 diabetes in the Botnia study and MPP.

Conclusions/interpretation

1h-PG is a valuable prediction tool for identifying adults at risk for future type 2 diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

1h-PG:

1 h post-OGTT plasma glucose

2h-PG:

2 h post-OGTT plasma glucose

AUCglucose :

AUC for OGTT glucose

AUCROC :

AUC for ROC

FPG:

Fasting plasma glucose

IFG:

Impaired fasting glucose

IGT:

Impaired glucose tolerance

MPP:

Malmö Prevention Project

NGT:

Normal glucose tolerance status

NRI:

Net reclassification improvement

PG:

Plasma glucose

ROC:

Receiver operating characteristic

References

  1. ADA Expert Committee on the Diagnosis and Classification of Diabetes Mellitus (1997) Report of the Expert Committee on the Diagnosis and Classification of Diabetes Mellitus. Diabetes Care 20:1183–1197

    Google Scholar 

  2. Chen L, Magliano DJ, Zimmet PZ (2011) The worldwide epidemiology of type 2 diabetes mellitus—present and future perspectives. Nat Rev Endocrinol 8:228–236

    Article  PubMed  Google Scholar 

  3. Fox CS, Coady S, Sorlie PD et al (2007) Increasing cardiovascular disease burden due to diabetes mellitus: the Framingham Heart Study. Circulation 115:1544–1550

    Article  PubMed  Google Scholar 

  4. Vinik AI, Maser RE, Mitchell BD, Freeman R (2003) Diabetic autonomic neuropathy. Diabetes Care 26:1553–1579

    Article  PubMed  Google Scholar 

  5. Gaede P, Lund-Andersen H, Parving HH, Pedersen O (2008) Effect of a multifactorial intervention on mortality in type 2 diabetes. N Engl J Med 358:580–591

    Article  CAS  PubMed  Google Scholar 

  6. Narayan KM, Boyle JP, Thompson TJ, Sorensen SW, Williamson DF (2003) Lifetime risk for diabetes mellitus in the United States. JAMA 290:1884–1890

    Article  CAS  PubMed  Google Scholar 

  7. Gang H, Hai Y, Dhingra R et al (2011) A novel hypoxia-inducible spliced variant of mitochondrial death gene Bnip3 promotes survival of ventricular myocytes. Circ Res 108:1084–1092

    Article  CAS  PubMed  Google Scholar 

  8. Dixon JB, Zimmet P, Alberti KG, Rubino F (2011) Bariatric surgery: an IDF statement for obese Type 2 diabetes. Diabet Med 28:628–642

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Merlotti C, Morabito A, Pontiroli AE (2014) Prevention of type 2 diabetes; a systematic review and meta-analysis of different intervention strategies. Diabetes Obes Metab 16:719–727

    Article  CAS  PubMed  Google Scholar 

  10. Tuomilehto J, Lindstrom J, Eriksson JG et al (2001) Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance. N Engl J Med 344:1343–1350

    Article  CAS  PubMed  Google Scholar 

  11. Noble D, Mathur R, Dent T, Meads C, Greenhalgh T (2011) Risk models and scores for type 2 diabetes: systematic review. BMJ 343:d7163

    Article  PubMed Central  PubMed  Google Scholar 

  12. Collins GS, de Groot JA, Dutton S et al (2014) External validation of multivariable prediction models: a systematic review of methodological conduct and reporting. BMC Med Res Methodol 14:40

    Article  PubMed Central  PubMed  Google Scholar 

  13. Kodama S, Horikawa C, Fujihara K et al (2013) Use of high-normal levels of haemoglobin A(1C) and fasting plasma glucose for diabetes screening and for prediction: a meta-analysis. Diabetes Metab Res Rev 29:680–692

    Article  CAS  PubMed  Google Scholar 

  14. Abdul-Ghani MA, Lyssenko V, Tuomi T, DeFronzo RA, Groop L (2009) Fasting versus postload plasma glucose concentration and the risk for future type 2 diabetes: results from the Botnia Study. Diabetes Care 32:281–286

    Article  PubMed Central  PubMed  Google Scholar 

  15. Rathmann W, Kowall B, Heier M et al (2010) Prediction models for incident type 2 diabetes mellitus in the older population: KORA S4/F4 cohort study. Diabet Med 27:1116–1123

    Article  CAS  PubMed  Google Scholar 

  16. Abdul-Ghani MA, Lyssenko V, Tuomi T, Defronzo RA, Groop L (2010) The shape of plasma glucose concentration curve during OGTT predicts future risk of type 2 diabetes. Diabetes Metab Res Rev 26:280–286

    Article  CAS  PubMed  Google Scholar 

  17. Tura A, Morbiducci U, Sbrignadello S, Winhofer Y, Pacini G, Kautzky-Willer A (2011) Shape of glucose, insulin, C-peptide curves during a 3-h oral glucose tolerance test: any relationship with the degree of glucose tolerance? Am J Physiol Regul Integr Comp Physiol 300:R941–R948

    Article  CAS  PubMed  Google Scholar 

  18. Kanauchi M, Kimura K, Kanauchi K, Saito Y (2005) Beta-cell function and insulin sensitivity contribute to the shape of plasma glucose curve during an oral glucose tolerance test in non-diabetic individuals. Int J Clin Pract 59:427–432

    Article  CAS  PubMed  Google Scholar 

  19. Tschritter O, Fritsche A, Shirkavand F, Machicao F, Haring H, Stumvoll M (2003) Assessing the shape of the glucose curve during an oral glucose tolerance test. Diabetes Care 26:1026–1033

    Article  CAS  PubMed  Google Scholar 

  20. Froslie KF, Roislien J, Qvigstad E et al (2013) Shape information from glucose curves: functional data analysis compared with traditional summary measures. BMC Med Res Methodol 13:6

    Article  PubMed Central  PubMed  Google Scholar 

  21. Lyssenko V, Jonsson A, Almgren P et al (2008) Clinical risk factors, DNA variants, and the development of type 2 diabetes. N Engl J Med 359:2220–2232

    Article  CAS  PubMed  Google Scholar 

  22. Genter PM, Ipp E (1994) Accuracy of plasma glucose measurements in the hypoglycemic range. Diabetes Care 17:595–598

    Article  CAS  PubMed  Google Scholar 

  23. Sonowane M, Savory J, Cross RE, Heintges MG, Chester B (1976) Kinetic measurement of glucose with a centrifugal analyzer; hexokinase and glucose oxidase procedures compared. Clin Chem 22:1100–1101

    CAS  PubMed  Google Scholar 

  24. (2010) Diagnosis and classification of diabetes mellitus. Diabetes Care 33(Suppl 1): S62–S69

  25. Rolandsson O, Hagg E, Nilsson M, Hallmans G, Mincheva-Nilsson L, Lernmark A (2001) Prediction of diabetes with body mass index, oral glucose tolerance test and islet cell autoantibodies in a regional population. J Intern Med 249:279–288

    Article  CAS  PubMed  Google Scholar 

  26. Abdul-Ghani MA, Williams K, DeFronzo RA, Stern M (2007) What is the best predictor of future type 2 diabetes? Diabetes Care 30:1544–1548

    Article  PubMed  Google Scholar 

  27. Song SH, Hardisty CA (2009) Early onset type 2 diabetes mellitus: a harbinger for complications in later years—clinical observation from a secondary care cohort. QJM 102:799–806

    Article  CAS  PubMed  Google Scholar 

  28. Almgren P, Lehtovirta M, Isomaa B et al (2011) Heritability and familiality of type 2 diabetes and related quantitative traits in the Botnia Study. Diabetologia 54:2811–2819

    Article  CAS  PubMed  Google Scholar 

  29. Manco M, Panunzi S, Macfarlane DP et al (2010) One-hour plasma glucose identifies insulin resistance and beta-cell dysfunction in individuals with normal glucose tolerance: cross-sectional data from the Relationship between Insulin Sensitivity and Cardiovascular Risk (RISC) study. Diabetes Care 33:2090–2097

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Marini MA, Succurro E, Frontoni S et al (2012) Insulin sensitivity, β-cell function, and incretin effect in individuals with elevated 1-hour postload plasma glucose levels. Diabetes Care 35:868–872

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Dupuis J, Langenberg C, Prokopenko I et al (2010) New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk. Nat Genet 42:105–116

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Saxena R, Hivert MF, Langenberg C et al (2010) Genetic variation in GIPR influences the glucose and insulin responses to an oral glucose challenge. Nat Genet 42:142–148

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Stern MP, Williams K, Haffner SM (2002) Identification of persons at high risk for type 2 diabetes mellitus: do we need the oral glucose tolerance test? Ann Intern Med 136:575–581

    Article  PubMed  Google Scholar 

  34. Gerstein HC, Santaguida P, Raina P et al (2007) Annual incidence and relative risk of diabetes in people with various categories of dysglycemia: a systematic overview and meta-analysis of prospective studies. Diabetes Res Clin Pract 78:305–312

    Article  PubMed  Google Scholar 

  35. Investigators DT, Gerstein HC, Yusuf S et al (2006) Effect of rosiglitazone on the frequency of diabetes in patients with impaired glucose tolerance or impaired fasting glucose: a randomised controlled trial. Lancet 368:1096–1105

    Article  Google Scholar 

  36. Knowler WC, Barrett-Connor E, Fowler SE et al (2002) Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med 346:393–403

    Article  CAS  PubMed  Google Scholar 

  37. Boyko EJ, Gerstein HC, Mohan V et al (2010) Effects of ethnicity on diabetes incidence and prevention: results of the Diabetes REduction Assessment with ramipril and rosiglitazone Medication (DREAM) trial. Diabet Med 27:1226–1232

    Article  CAS  PubMed  Google Scholar 

  38. Abdul-Ghani MA, Abdul-Ghani T, Ali N, DeFronzo RA (2008) One hour plasma glucose concentration and the metabolic syndrome identifies subjects at high risk for future type 2 diabetes. Diabetes Care 31:1650–1655

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Matyka KA (2008) Type 2 diabetes in childhood: epidemiological and clinical aspects. Br Med Bull 86:59–75

    Article  CAS  PubMed  Google Scholar 

  40. Lijmer JG, Bossuyt PM (2009) Various randomized designs can be used to evaluate medical tests. J Clin Epidemiol 62:364–373

    Article  PubMed  Google Scholar 

  41. Robin X, Turck N, Hainard A et al (2011) pROC: an open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinforma 12:77

    Article  Google Scholar 

Download references

Acknowledgements

We thank all the participants in the Botnia study and MPP.

Funding

The Botnia study was supported by grants from the Sigrid Juselius Foundation, Folkhälsan Research Foundation, Signe and Ane Gyllenberg Foundation, Swedish Cultural Foundation in Finland, Finnish Diabetes Research Foundation, Foundation for Life and Health in Finland, Finnish Medical Society, Paavo Nurmi Foundation, Helsinki University Central Hospital Research Foundation, Perklén Foundation, Ollqvist Foundation, Närpes Health Care Foundation and Ahokas Foundation. The study was also supported by the Municipal Heath Care Center and Hospital in Jakobstad and Health Care Centers in Vasa, Närpes and Korsholm. The skilful assistance of the Botnia Study Group is gratefully acknowledged.

The MPP was supported by grants from the Swedish Research Council (including Linné grant 31475113580), the Heart and Lung Foundation, the Diabetes Research Society, a Nordic Center of Excellence Grant in Disease Genetics, the Diabetes Program at the Lund University, the European Foundation for the Study of Diabetes, the Påhlsson Foundation, the Craaford Foundation, the Novo Nordisk Foundation, the European Network of Genomic and Genetic Epidemiology and the Wallenberg Foundation.

DM is supported by a Canada Research Chair.

Duality of interest

LG has been a consultant for and served on advisory boards for Tethys Bioscience, Sanofi-Aventis, GlaxoSmithKline, Eli Lilly, Merck and Novartis; also he has lectured at meetings organised by Novartis, GlaxoSmithKline and Sanofi-Aventis and received grant support from Novartis. VL received consulting fees from Tethys Bioscience. All other authors declare that there is no duality of interest associated with their contribution to this manuscript.

Contribution statement

All authors have made substantial contributions to the manuscript. AA, DM, PA, JD, VL and LG contributed to the study concept and design. Acquisition of data was carried out by AA, DM, MA, BI, PN, TT, VL and LG. Data analyses and interpretation were performed by AA, DM, PA, MA, TT, VL and LG. The manuscript was drafted by AA and DM. The manuscript was critically reviewed for important intellectual content by PA, MA, JD, BI, PN, TT, VL and LG. All authors have approved the final draft for publication. DM and LG had full access to all the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Meyre.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM Methods

(PDF 59 kb)

ESM Table 1

(PDF 16 kb)

ESM Table 2

(PDF 21 kb)

ESM Table 3

(PDF 22 kb)

ESM Table 4

(PDF 20 kb)

ESM Table 5

(PDF 21 kb)

ESM Table 6

(PDF 27 kb)

ESM Table 7

(PDF 20 kb)

ESM Table 8

(PDF 21 kb)

ESM Table 9

(PDF 20 kb)

ESM Fig. 1

(PDF 20 kb)

ESM Fig. 2

(PDF 75 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alyass, A., Almgren, P., Akerlund, M. et al. Modelling of OGTT curve identifies 1 h plasma glucose level as a strong predictor of incident type 2 diabetes: results from two prospective cohorts. Diabetologia 58, 87–97 (2015). https://doi.org/10.1007/s00125-014-3390-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00125-014-3390-x

Keywords

Navigation