Skip to main content
Log in

Fine mapping and candidate gene analysis of qFL-chr1, a fiber length QTL in cotton

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

A fiber length QTL, qFL-chr1, was fine mapped to a 0.9 cM interval of cotton chromosome 1. Two positional candidate genes showed positive correlation between gene expression level and fiber length.

Abstract

Prior analysis of a backcross-self mapping population derived from a cross between Gossypium hirsutum L. and G. barbadense L. revealed a QTL on chromosome 1 associated with increased fiber length (qFL-chr1), which was confirmed in three independent populations of near-isogenic introgression lines (NIILs). Here, a single NIIL, R01-40-08, was used to develop a large population segregating for the target region. Twenty-two PCR-based polymorphic markers used to genotype 1672 BC4F2 plants identified 432 recombinants containing breakpoints in the target region. Substitution mapping using 141 informative recombinants narrowed the position of qFL-chr1 to a 1.0-cM interval between SSR markers MUSS084 and CIR018. To exclude possible effects of non-target introgressions on fiber length, different heterozygous BC4F3 plants introgressed between SSR markers NAU3384 and CGR5144 were selected to develop sub-NILs. The qFL-chr1 was further mapped at 0.9-cM interval between MUSS422 and CIR018 by comparisons of sub-NIL phenotype, and increased fiber length by ~1 mm. The 2.38-Mb region between MUSS422 and CIR018 in G. barbadense contained 19 annotated genes. Expression levels of two of these genes, GOBAR07705 (encoding 1-aminocyclopropane-1-carboxylate synthase) and GOBAR25992 (encoding amino acid permease), were positively correlated with fiber length in a small F2 population, supporting these genes as candidates for qFL-chr1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Altschul SF, Gish W, Miller, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  PubMed  Google Scholar 

  • Brouwer DJ, Clair DA (2004) Fine mapping of three quantitative trait loci for late blight resistance in tomato using near isogenic lines (NILs) and sub-NILs. Theor Appl Genet 108:628–638

    Article  CAS  PubMed  Google Scholar 

  • Chee P and Campbell BT (2009) Bridging classical and molecular genetics of cotton fiber quality and development. In: Paterson AH (Ed) Genetics and genomics of cotton. Springer, New York, pp 283–310.

    Chapter  Google Scholar 

  • Chee PW, Rong JK, Williams-Coplin D, Schulze SR, Paterson AH (2004) EST derived PCR-based markers for functional gene homologues in cotton. Genome 47:449–462

    Article  CAS  PubMed  Google Scholar 

  • Chee P, Draye X, Jiang CX, Decanini L, Delmonte T, Bredhauer R, Smith CW, Paterson AH (2005) Molecular dissection of interspecific variation between Gossypium hirsutum and Gossypium barbadense (cotton) by a backcross-self approach: III. Fiber length. Theor Appl Genet 111:772–781

    Article  CAS  PubMed  Google Scholar 

  • Chen KY, Tanksley SD (2004) High-resolution mapping and functional analysis of se2.1: a major stigma exertion quantitative trait locus associated with the evolution from allogamy to autogamy in the genus Lycopersicon. Genetics 168(3):1563–1573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen GD, Li HB, Zheng Z, Wei YM, Zheng YL, McIntyre CL, Zhou MX, Liu CJ (2012) Characterization of a QTL affecting spike morphology on the long arm of chromosome 3 H in barley (Hordeum vulgare L.) based on near isogenic lines and a NIL-derived population. Theor Appl Genet 125:1385–1392

    Article  CAS  PubMed  Google Scholar 

  • Cheng H, Lu C, Yu J, Zou C, Zhang Y, Wang Q, Huang J, Feng X, Jiang P, Yang W, Song G (2016) Fine mapping and candidate gene analysis of the dominant glandless gene Gle 2 in cotton (Gossypium spp.). Theor Appl Genet 129:1347–1355

    Article  CAS  PubMed  Google Scholar 

  • Conesa A, Götz S, Garcia-Gomez JM, Terol J, Talon M, Robles M (2005) Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21:3674–3676

    Article  CAS  PubMed  Google Scholar 

  • Dun XL, Zhou ZF, Xia SQ, Wen J, Yi B, Shen JX, Ma CZ, Tu JX, Fu TD (2011) BnaC.Tic40, a plastid inner membrane translocon originating from Brassica oleracea, is essential for tapetal function and microspore development in Brassica napus. Plant J 68:532–545

    Article  CAS  PubMed  Google Scholar 

  • Fan X, Guo Q, Xu P, Gong Y, Shu H, Yang Y, Ni W, Zhang X, Shen X (2015) Transcriptome-wide identification of salt responsive members of the WRKY gene family in Gossypium aridum. PLOS one 10(5): e0126148.

    Article  PubMed  PubMed Central  Google Scholar 

  • Frary A, Nesbitt TC, Fray A, Grandillo S, Knaap E, Cong B, Liu JP, Meller J, Elber R, Alpert KB, Tanksley SD (2000) fw2.2: a quantitative trait locus key to the evolution of tomato fruit size. Science 289:85–88

    Article  CAS  PubMed  Google Scholar 

  • Fridman E, Pleban T, Zamir D (2000) A recombination hotspot delimits a wild-species quantitative trait locus for tomato sugar content to 484 bp within an invertase gene. Proc Natl Acad Sci USA 97(9):4718–4723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fujino K, Sekiguchi H, Matsuda Y, Sugimoto K, Ono K, Yano M (2008) Molecular identification of a major quantitative trait locus, qLTG3–1, controlling low-temperature germinability in rice. Proc Natl Acad Sci USA 105(34):12623–12628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo WZ, Cai CP, Wang CB, Zhao L, Wang L, Zhang TZ (2008) A preliminary analysis of genome structure and composition in Gossypium hirsutum. BMC Genom 9:314

    Article  Google Scholar 

  • He DH, Lin ZX, Zhang XL, Nie YC, Guo XP, Zhang YX, Li W (2007) QTL mapping for economic traits based on a dense genetic map of cotton with PCR-based markers using the interspecific cross of Gossypium hirsutum × Gossypium barbadense. Euphytica 153:181–197

    Article  CAS  Google Scholar 

  • Hinchlife DJ, Meredith WR, Yeater KM, Kim HJ, Woodward AW, Chen ZJ, Triplett BA (2010) Near-isogenic cotton germplasm lines that differ in fiber-bundle strength have temporal differences in fiber gene expression patterns as revealed by comparative high-throughput profiling. Theor Appl Genet 120:1347–1366

    Article  Google Scholar 

  • Hu G, Yu S (2007) Extraction of high-quality total RNA in cotton leaf with improved CTAB Method. Cotton science 19:69–70

    Google Scholar 

  • Islam MS, Zeng L, Delhom CD, Song X, Kim HJ, Li P, Fang DD (2014) Identification of cotton fiber quality quantitative trait loci using intraspecific crosses derived from two near-isogenic lines differing in fiber bundle strength. Mol Breed 34:373–384

    Article  CAS  Google Scholar 

  • Islam MS, Thyssen GN, Jenkins JN, Zeng L, Delhom CD, McCarty JC, Deng DD, Hinchliffe DJ, Jones DC, Fang DD (2016) A MAGIC population-based genome-wide association study reveals functional association of GhRBB1_A07 gene with superior fiber quality in cotton. BMC Genom 17:903

    Article  Google Scholar 

  • Jamshed M, Jia F, Gong J, Palanga KK, Shi Y, Li J Shang H, Liu A, Chen T, Zhang Z, Cai J, Ge Q, Liu Z, Lu Q, Deng X, Tan Y, Rashid H, Sarfraz Z, Hassan M, Gong W, Yuan Y (2016) Identification of stable quantitative trait loci (QTLs) for fiber quality traits across multiple environments in Gossypium hirsutum recombinant inbred line population. BMC Genom 17:197

    Article  Google Scholar 

  • Kosambi DD (1944) The estimation of map distances from recombination values. Ann Eugen 12:172–175

    Article  Google Scholar 

  • Lacape JM, Jacobs J, Arioli T, Derijcker R, Forestier-Chiron N, Jean J, Llewellyn D, Thomas E, Viot C (2009) A new inter-specific, Gossypium hirsutum × G. barbadense, RIL population: towards a unified consensus linkage map of tetraploid cotton. Theor Appl Genet 119:281–292

    Article  CAS  PubMed  Google Scholar 

  • Lacape JM, Llewellyn D, Jacobs J, Arioli T, Becker D, Calhoun S, Al-Ghazi Y, Liu SM, Palai O, Georges S, Giband M, Assun H, Barroso PAV, Claverie M, Gawryziak G, Jean J, Vialle M, Viot C (2010) Meta-analysis of cotton fiber quality QTLs across diverse environments in a Gossypium hirsutum × G. barbadense RIL population. BMC Plant Biol 10:132

    Article  PubMed  PubMed Central  Google Scholar 

  • Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE, Newburg L (1987) MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174–181

    Article  CAS  PubMed  Google Scholar 

  • Lavaud C, Lesné A, Piriou C, Roy GL, Boutet G, Moussart A, Poncet C, Delourme R, Baranger A, Pilet-Nayel ML (2015) Validation of QTL for resistance to Aphanomyces euteiches in different pea genetic backgrounds using near-isogenic lines. Theor Appl Genet 128:2273–2288

    Article  CAS  PubMed  Google Scholar 

  • Levi A, Paterson AH, Barak V, Yakir D, Wang BH, Chee PW, Saranga Y (2009) Field evaluation of cotton near-isogenic lines introgressed with QTLs for productivity and drought related traits. Mol Breed 23:179–195

    Article  CAS  Google Scholar 

  • Liu X, Zhao B, Zheng HJ, Hu Y, Lu G, Yang CQ, Chen JD, Chen JJ, Chen DY, Zhang L, Zhou Y, Wang LJ, Guo WZ, Bai YL, Ruan JX, Shangguan XX, Mao YB, Shan CM, Jiang JP, Zhu YQ, Jin L, Kang H, Chen ST, He XL, Wang R, Wang YZ, Chen J, Wang LJ, Yu ST, Wang BY, Wei J, Song SC, Lu XY, Gao ZC, Gu WY, Deng X, Ma D, Wang S, Liang WH, Fang L, Cai CP, Zhu XF, Zhou BL, Chen ZJ, Xu SH, Zhang YG, Wang SY, Zhang TZ, Zhao GP, Chen XY (2015) Gossypium barbadense genome sequence provides insight into the evolution of extra-long staple fiber and specialized metabolites. Sci Rep 5:14139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu D, Zhang J, Liu X, Wang W, Liu D, Teng Z, Fang X, Tan Z, Tang S, Yang J, Zhong J, Zhang Z (2016) Fine mapping and RNA-Seq unravels candidate genes for a major QTL controlling multiple fiber quality traits at the T1 region in upland cotton. BMC Genom 17:295

    Article  Google Scholar 

  • Mei M, Syed NH, Gao W, Thaxton PM, Smith CW, Stelly DM, Chen ZJ (2004) Genetic mapping and QTL analysis of fiber-related traits in cotton (Gossypium). Theor Appl Genet 108:280–291

    Article  CAS  PubMed  Google Scholar 

  • Naoumkina M, Thyssen GN, Fang DD (2015) RNA-seq analysis of short fiber mutants Ligon-lintless-1 (Li 1 ) and -2(Li 2 ) revealed important role of aquaporins in cotton (Gossypium hirsutum L.) fiber elongation. BMC Plant Biol 15:65

    Article  PubMed  PubMed Central  Google Scholar 

  • Park YH, Alabadt MS, Ulloa M, Sicker B, Wilkins TA, Yu J, Stelly DM, Kohel RJ, El-Shihy OM, Cantrell RG (2005) Genetic mapping of new cotton fiber loci using EST-derived microsatellites in an interspecific recombinant inbred line cotton population. Mol Genet Genom 274:428–441

    Article  CAS  Google Scholar 

  • Paterson AH (2010) Cotton genomics. In: Zehr UB (ed) Cotton, biotechnology in agriculture and forestry, vol 65. Springer, Berlin, doi:10.1007/978-3-642-04796-1$43

    Google Scholar 

  • Paterson AH, De-Verna JW, Lanini B, Tanksley SD (1990) Fine mapping of quantitative trait loci using selected overlapping recombinant chromosomes, in an interspecific cross of tomato. Genetics 124:735–742

    CAS  PubMed  PubMed Central  Google Scholar 

  • Paterson AH, Saranga Y, Menz M, Jiang CX, Wright RJ (2003) QTL analysis of genotype × Environment interaction affecting cotton fiber quality. Theor Appl Genet 106:384–396

    Article  CAS  PubMed  Google Scholar 

  • Paterson AH, Wendel JF, Gundlach H, Guo H, JenkinsJ, Jin DC, Llewellyn D, Showmaker KC, Shu SQ, Udall J, Yoo MJ, Byers R, Chen W, Doron-Faigenboim A, Duke MV, Gong L, Grimwood J, Grover C, Grupp K, Hu GJ, Lee TH, Li JP, Lin LF, Liu T, Marler BS, Page JT, Roberts AW, Romanel E, Sanders WS, Szadkowski E, Tan X, Tang HB, Xu CM, Wang JP, Wang ZN, Zhang D, Zhang L, Ashrafi H, Bedon F, Bowers JE, Brubaker CL, Chee PW, Das S, Gingle AR, Haigler CH, Harker D, Hoffmann LV, Hovav R, Jones DC, Lemke C, Mansoor S, ur Rahman M, Rainville LN, Rambani A, Reddy UK, Rong JK, Saranga Y, Scheffler BE, Scheffler JA, Stelly DM, Triplett BA, van Deynze A, Vaslin MF, Waghmare VN, Walford SA, Wright RJ, Zaki EA, Zhang T, Dennis ES, Mayer KF, Peterson DG, Rokhsar DS, Wang XY, Schmutz J (2012) Repeated polyploidization of Gossypium genomes and the evolution of spinnable cotton fibers. Nature 492:423–427

    Article  CAS  PubMed  Google Scholar 

  • Pea G, Aung HH, Frascaroli E, Landi P, Pè ME (2013) Extensive genomic characterization of a set of near-isogenic lines for heterotic QTL in maize (Zea mays L.). BMC Genom 14:61

    Article  CAS  Google Scholar 

  • Shen XL, Guo WZ, Zhu XF, Yuan YL, Yu JZ, Kohel RJ, Zhang TZ (2005) Molecular mapping of QTL for fiber qualities in three diverse lines in upland cotton using SSR markers. Mol Breed 15:169–181

    Article  CAS  Google Scholar 

  • Shen XL, Guo WZ, Lu QX, Zhu XF, Yuan YL, Zhang TZ (2007) Genetic mapping of quantitative trait loci for fiber quality and yield trait by RIL approach in Upland cotton. Euphytica 155:371–380

    Article  CAS  Google Scholar 

  • Shen XL, Cao ZB, Singh R, Lubbers E, Xu P, Smith CW, Paterson AH, Chee P (2011) Efficacy of qFL-chr1, a quantitative trait locus for fiber length in cotton (Gossypium spp.). Crop Sci 51:1–6

    Article  Google Scholar 

  • Shi YH, Zhu SW, Mao XZ, Feng JX Qin YM, Zhang L, Cheng J, Wei LP, Wang ZY, Zhu YX (2006) Transcriptome profiling, molecular biological, and physiological studies reveal a major role for ethylene in cotton fiber cell elongation. Plant Cell 18(3):651–664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun FD, Zhang JH, Wang SF, Gong WK, Shi YZ, Liu AY, Li JW, Gong JW, Shang HH, Yuan YL (2012) QTL mapping for fiber quality traits across multiple generations and environments in upland cotton. Mol Breed 30:569–582

    Article  Google Scholar 

  • Szalma SJ, Hostert BM, LeDeaux JR, Stuber CW, Holland JB (2007) QTL mapping with near-isogenic lines in maize. Theor Appl Genet 114:1211–1228

    Article  CAS  PubMed  Google Scholar 

  • Thomson MJ, Edwards JD, Septiningsih, EM, Harrington SE, McCouch SR (2006) Substitution mapping of dth1.1, a flowering-time quantitative trait locus (QTL) associated with transgressive variation in rice, reveals multiple sub-QTL. Genetics 172:2501–2514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang KL, Li H, Ecker JR (2002) Ethylene biosynthesis and signaling networks. Plant Cell 14 (suppl 1):S131–S151.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang B, Nie YC, Lin ZX, Zhang XL, Liu JJ, Bai J (2012) Molecular diversity, genomic constitution, and QTL mapping of fiber quality by mapped SSRs in introgression lines derived from Gossypium hirsutum × G. darwinii Watt. Theor Appl Genet 125:1263–1274

    Article  PubMed  Google Scholar 

  • Wissuwa M, Wegner J, Ae N, Yano M (2002) Substitution mapping of Pup1: a major QTL increasing phosphorus uptake of rice from a phosphorus-deficient soil. Theor Appl Genet 105:890–897

    Article  CAS  PubMed  Google Scholar 

  • Wu JX, Gutierrez OA, Jenkins JN, McCarty JC, Zhu J (2009) Quantitative analysis and QTL mapping for agronomic and fiber traits in an RI population of upland cotton. Euphytica 165:231–245

    Article  Google Scholar 

  • Xia ZJ, Watanabeb S, Yamadac T, Tsubokurab Y, Nakashimad H, Zhaia H, Anaid T, Satoe S, Yamazakif T, Lu SX, Wu HY, Tabatae S, Harada K (2012) Positional cloning and characterization reveal the molecular basis for soybean maturity locus E1 that regulates photoperiodic flowering. Proc Natl Acad Sci USA 109(32):2155–2164

    Article  Google Scholar 

  • Xiao J, Wu K, Fang DD, Stelly DM, Yu J, Cantrell RG (2009) New SSR markers for use in cotton (Gossypium spp.) improvement. J Cotton Sci 13:75–157

    CAS  Google Scholar 

  • Xie XB, Song MH, Jin FX, Ahn SN, Suh JP, Hwang HG, McCouch SR (2006) Fine mapping of a grain weight quantitative trait locus on rice chromosome 8 using near-isogenic lines derived from a cross between Oryza sativa and Oryza rufipogon. Theor Appl Genet 113:885–894

    Article  CAS  PubMed  Google Scholar 

  • Yu Y, Yuan DJ, Liang SG, Li XM, Wang XQ, Lin ZG, Zhang XL (2011) Genome structure of cotton revealed by a genome-wide SSR genetic map constructed from a BC1 population between Gossypium hirsutum and G. barbadense. BMC Genom 12:15

    Article  CAS  Google Scholar 

  • Yuan Y, Miao J, Tao Y, Ji C, Du P, Wang J, Wang Z, Chen D, Gong Z, Yi C, Zhu J, Dong G, Gu M, Zhou Y, Liang G (2015) Identification and fine mapping of qPH6, a novel major quantitative trait locus for plant height in rice. Mol Breed 35:56

    Article  Google Scholar 

  • Zhang J, Guo WZ, Zhang TZ (2002) Molecular linkage map of allotetraploid cotton (Gossypium hirsutum L. × Gossypium barbadense L.) with a haploid population. Theor Appl Genet 105:1166–1174

    Article  CAS  PubMed  Google Scholar 

  • Zhang ZS, Xiao YH, Luo M, Li XB, Luo XY, Hou L, Li DM, Pei Y (2005) Construction of a genetic linkage map and QTL analysis of fiber-related traits in upland cotton (Gossypium hirsutum L.). Euphytica 144:91–99

    Article  CAS  Google Scholar 

  • Zhang ZS, Hu MC, Zhang J, Liu DJ, Zheng J, Zhang K, Wang W, Wan Q (2009a) Construction of a comprehensive PCR-based marker linkage map and QTL mapping for fiber quality traits in upland cotton (Gossypium hirsutum L.). Mol Breed 24:49–61

    Article  Google Scholar 

  • Zhang YS, Luo LJ, Liu TM, Xu CG, Xing YZ (2009b) Four rice QTL controlling number of spikelets per panicle expressed the characteristics of single Mendelian gene in near isogenic backgrounds. Theor Appl Genet 118:1035–1044

    Article  CAS  PubMed  Google Scholar 

  • Zhang K, Zhang J, Ma J, Tang SY, Liu DJ, Teng ZH, Liu DX, Zhang ZS (2012) Genetic mapping and quantitative trait locus analysis of fiber quality traits using a three-parent composite population in upland cotton (Gossypium hirsutum L.). Mol Breed 29:335–348

    Article  Google Scholar 

  • Zhang TZ, Hu Y, Jiang WK, Fang L, Guan XY, Chen JD, Zhang JB, Saski CA, Scheffler BE, Stelly DM, Hulse-Kemp AM, Wan Q, Liu BL, Liu CX, Wang S, Pan MQ, Wang YK, Wang DW, Ye WX, Chang LJ, Zhang WP, Song QX, Kirkbride RC, Chen XY, Dennis E, Llewellyn DJ, Peterson DG, Thaxton P, Jones DC, Wang Q, Xu XY, Zhang H, Wu HT, Zhou L, Mei GF, Chen SQ, Tian Y, Xiang D, Li XH, Ding J, Zuo QY, Tao LN, Liu YC, Li J, Lin Y, Hui YY, Cao ZS, Cai CP, Zhu XF, Jiang Z, Zhou BL, Guo WZ, Li RQ, Chen ZJ (2015) Sequencing of allotetraploid cotton (Gossypium hirsutum L. acc. TM-1) provides a resource for fibre improvement. Nat Biotechnol 33:531–537

    Article  CAS  PubMed  Google Scholar 

  • Zuo W, Chao Q, Zhang N, Ye J, Tan G, Li B, Xing Y, Zhang B, Liu H, Fengler KA, Zhao J, Zhao X, Chen Y, Lai J, Yan J, Xu M (2015) A maize wall-associated kinase confers quantitative resistance to head smut. Nat Genet 47(2):151–157

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Natural Science Foundation of China (NSFC) (No. 31171595, 31471545), Natural science fund for colleges and universities in Jiangsu Province (BK20160580), Jiangsu Collaborative Innovation Center for Modern Crop Production.

Author contributions

X.P. contributed to genotyping, data analysis, and writing; G.J. contributed to genotyping and data collection; C.Z.B. contributed to genotyping; C.P. provided material and reviewed manuscript; G.Q. contributed to population construction; X.Z.Z. contributed to q-PCR analysis; P.A. provided material and reviewed manuscript; Z.X.G. contributed to population construction; and S.X.L. contributed to experiment design and writing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinlian Shen.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest in the reported research.

Ethical standards

The authors note that this research is performed and reported in accordance with ethical standards of the scientific conduct.

Additional information

Communicated by Joshua A Udall.

Peng Xu and Jin Gao have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1315 KB)

Supplementary material 2 (DOC 57 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, P., Gao, J., Cao, Z. et al. Fine mapping and candidate gene analysis of qFL-chr1, a fiber length QTL in cotton. Theor Appl Genet 130, 1309–1319 (2017). https://doi.org/10.1007/s00122-017-2890-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-017-2890-8

Keywords

Navigation