Skip to main content

Advertisement

Log in

Near-isogenic cotton germplasm lines that differ in fiber-bundle strength have temporal differences in fiber gene expression patterns as revealed by comparative high-throughput profiling

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Gene expression profiles of developing cotton (Gossypium hirsutum L.) fibers from two near-isogenic lines (NILs) that differ in fiber-bundle strength, short-fiber content, and in fewer than two genetic loci were compared using an oligonucleotide microarray. Fiber gene expression was compared at five time points spanning fiber elongation and secondary cell wall (SCW) biosynthesis. Fiber samples were collected from field plots in a randomized, complete block design, with three spatially distinct biological replications for each NIL at each time point. Microarray hybridizations were performed in a loop experimental design that allowed comparisons of fiber gene expression profiles as a function of time between the two NILs. Overall, developmental expression patterns revealed by the microarray experiment agreed with previously reported cotton fiber gene expression patterns for specific genes. Additionally, genes expressed coordinately with the onset of SCW biosynthesis in cotton fiber correlated with gene expression patterns of other SCW-producing plant tissues. Functional classification and enrichment analysis of differentially expressed genes between the two NILs revealed that genes associated with SCW biosynthesis were significantly up-regulated in fibers of the high-fiber quality line at the transition stage of cotton fiber development. For independent corroboration of the microarray results, 15 genes were selected for quantitative reverse transcription PCR analysis of fiber gene expression. These analyses, conducted over multiple field years, confirmed the temporal difference in fiber gene expression between the two NILs. We hypothesize that the loci conferring temporal differences in fiber gene expression between the NILs are important regulatory sequences that offer the potential for more targeted manipulation of cotton fiber quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Arpat AB, Waugh M, Sullivan JP, Gonzales M, Frisch D, Main D, Wood T, Leslie A, Wing RA, Wilkins TA (2004) Functional genomics of cell elongation in developing cotton fibers. Plant Mol Biol 54:911–929

    Article  PubMed  CAS  Google Scholar 

  • Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G (2000) Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 25:25–29

    Article  PubMed  CAS  Google Scholar 

  • Barrett T, Troup DB, Wilhite SE, Ledoux P, Rudnev D, Evangelista C, Kim IF, Soboleva A, Tomashevsky M, Edgar R (2007) NCBI GEO: mining tens of millions of expression profiles—database and tools update. Nucleic Acids Res 35(Database issue):D760–D765

    Article  PubMed  CAS  Google Scholar 

  • Basra AS, Malik CP (1984) Development of the cotton fiber. Int Rev Cytol 89:65–113

    Article  CAS  Google Scholar 

  • Benedict CR, Kohel RJ, Lewis HL (1999) Cotton fiber quality. In: Smith CW, Cothren JT (eds) Cotton: origin, history, technology, and production. Wiley, New York, pp 269–288

    Google Scholar 

  • Blenda A, Scheffler J, Scheffler B, Palmer M, Lacape JM, Yu JZ, Jesudurai C, Jung S, Muthukumar S, Yellambalase P, Ficklin S, Staton M, Eshelman R, Ulloa M, Saha S, Burr B, Liu S, Zhang T, Fang D, Pepper A, Kumpatla S, Jacobs J, Tomkins J, Cantrell R, Main D (2006) CMD: a cotton microsatellite database resource for Gossypium genomics. BMC Genomics 7:132

    Article  PubMed  CAS  Google Scholar 

  • Blüthgen N, Brand K, Cajavec B, Swat M, Herzel H, Beule D (2005) Biological profiling of gene groups utilizing Gene Ontology. Genome Inform 16:106–115

    PubMed  Google Scholar 

  • Bowman DT, Gutierrez OA, Percy RG, Calhoun DS, May OL (2006) Pedigrees of upland and pima cotton cultivars released between 1970 and 2005. Mississippi Agricultural and Forestry Experiment Station Bulletin 1155

  • Brady SM, Song S, Dhugga KS, Rafalski JA, Benfey PN (2007) Combining expression and comparative evolutionary analysis. The COBRA gene family. Plant Physiol 143:172–187

    Article  PubMed  CAS  Google Scholar 

  • Brown DM, Zeef LA, Ellis J, Goodacre R, Turner SR (2005) Identification of novel genes in Arabidopsis involved in secondary cell wall formation using expression profiling and reverse genetics. Plant Cell 17:2281–2295

    Article  PubMed  CAS  Google Scholar 

  • Calhoun DS, Bowman DT, May OL (1994) Pedigrees of upland and pima cotton cultivars released between 1970 and 1990. Mississippi Agricultural and Forestry Experiment Station Bulletin 1017

  • Ching A, Dhugga KS, Appenzeller L, Meeley R, Bourett TM, Howard RJ, Rafalski A (2006) Brittle stalk 2 encodes a putative glycosylphosphatidylinositol-anchored protein that affects mechanical strength of maize tissues by altering the composition and structure of secondary cell walls. Planta 224:1174–1184

    Article  PubMed  CAS  Google Scholar 

  • Conesa A, Götz S, García-Gómez JM, Terol J, Talón M, Robles M (2005) Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21:3674–3676

    Article  PubMed  CAS  Google Scholar 

  • Dhindsa RJ, Beasley CA, Ting IP (1975) Osmoregulation in cotton fiber. Plant Physiol 56:394–398

    Article  PubMed  CAS  Google Scholar 

  • Dudoit S, Yang YH, Callow MJ, Speed TP (2002) Statistical methods for identifying genes with differential expression in replicated cDNA microarray experiments. Stat Sin 12:111–139

    Google Scholar 

  • Gipson JR, Joham HE (1969) Influence of night temperature on growth and development of cotton (Gossypium hirsutum L.) III. Fiber elongation. Crop Sci 9:127–129

    Google Scholar 

  • Gipson JR, Ray LL (1969) Fiber elongation rates in five varieties of cotton (Gossypium hirsutum L.) as influenced by night temperature. Crop Sci 9:339–341

    Article  Google Scholar 

  • Gish W, States DJ (1993) Identification of protein coding regions by database similarity search. Nat Genet 3:266–272

    Article  PubMed  CAS  Google Scholar 

  • Gou JY, Wang LJ, Chen SP, Hu WL, Chen XY (2007) Gene expression and metabolite profiles of cotton fiber during cell elongation and secondary cell wall synthesis. Cell Res 17:422–434

    PubMed  CAS  Google Scholar 

  • Guo W, Cai C, Wang C, Han Z, Song X, Wang K, Niu X, Wang C, Lu K, Shi B, Zhang T (2007) A microsatellite-based, gene-rich linkage map reveals genome structure, function and evolution in Gossypium. Genetics 176:527–541

    Article  PubMed  CAS  Google Scholar 

  • Haigler CH, Rao NR, Roberts EM, Huang JY, Upchurch DR, Trolinder NL (1990) Cultured ovules as models for cotton fiber development under low temperatures. Plant Physiol 95:89–96

    Google Scholar 

  • Haigler CH, Zhang D, Wilkerson CG (2005) Biotechnological improvement of cotton fiber maturity. Physiol Plant 124:285–294

    Article  CAS  Google Scholar 

  • Harmer SE, Orford SJ, Timmis JN (2002) Characterisation of six α-expansin genes in Gossypium hirsutum (upland cotton). Mol Genet Genomics 268:1–9

    Article  PubMed  CAS  Google Scholar 

  • Holm S (1979) A simple sequentially rejective multiple test procedure. Scand J Stat 6:65–70

    Google Scholar 

  • Hovav R, Udall JA, Hovav E, Rapp R, Flagel L, Wendel JF (2008) A majority of cotton genes are expressed in single-celled fiber. Planta 227:319–329

    Article  PubMed  CAS  Google Scholar 

  • Huala E, Dickerman A, Garcia-Hernandez M, Weems D, Reiser L, LaFond F, Hanley D, Kiphart D, Zhuang J, Huang W, Mueller L, Bhattacharyya D, Bhaya D, Sobral B, Beavis B, Somerville C, Rhee SY (2001) The Arabidopsis Information Resource (TAIR): a comprehensive database and web-based information retrieval, analysis, and visualization system for a model plant. Nucleic Acids Res 29:102–105

    Article  PubMed  CAS  Google Scholar 

  • Huang GQ, Xu WL, Gong SY, Li B, Wang XL, Xu D, Li XB (2008) Characterization of 19 novel cotton FLA genes and their expression profiling in fiber development and in response to phytohormones and salt stress. Physiol Plant 134:348–359

    Article  PubMed  CAS  Google Scholar 

  • Jacob-Wilk D, Kurek I, Hogan P, Delmer DP (2006) The cotton fiber zinc-binding domain of cellulose synthase A1 from Gossypium hirsutum displays rapid turnover in vitro and in vivo. Proc Natl Acad Sci USA 103:12191–12196

    Article  PubMed  CAS  Google Scholar 

  • John ME (1995) Characterization of a cotton (Gossypium hirsutum L.) fiber mRNA (Fb-B6). Plant Physiol 107:1477–1478

    Article  PubMed  CAS  Google Scholar 

  • Johnson KL, Jones BJ, Bacic A, Schultz CJ (2003) The fasciclin-like arabinogalactan proteins of Arabidopsis. A multigene family of putative cell adhesion molecules. Plant Physiol 133:1911–1925

    Article  PubMed  CAS  Google Scholar 

  • Jung S (2008) Positioning cotton in the market for quality: an application of needs assessment for west Texas. In: Proceedings of the 2008 Beltwide Cotton Conferences. National Cotton Council of America, Memphis, TN, USA, pp 369–381

  • Kim HJ, Triplett BA (2001) Cotton fiber growth in planta and in vitro. Models for plant cell elongation and cell wall biogenesis. Plant Physiol 127:1361–1366

    Article  PubMed  CAS  Google Scholar 

  • Kim HJ, Triplett BA (2004a) Characterization of GhRac1 GTPase expressed in developing cotton (Gossypium hirsutum L.) fibers. Biochim Biophys Acta 1679:214–221

    PubMed  CAS  Google Scholar 

  • Kim HJ, Triplett BA (2004b) Cotton fiber germin-like protein. I. Molecular cloning and gene expression. Planta 218:516–524

    Article  PubMed  CAS  Google Scholar 

  • Kim HJ, Triplett BA (2007) Cellulose synthase catalytic subunit (Cesa) genes associated with primary or secondary wall biosynthesis in developing cotton fibers (Gossypium hirsutum). In: Proceedings of the world cotton research conference-4. International Cotton Advisory Committee, Washington DC, USA

  • Ko JH, Beers EP, Han KH (2006) Global comparative transcriptome analysis identifies gene network regulating secondary xylem development in Arabidopsis thaliana. Mol Genet Genomics 276:517–531

    Article  PubMed  CAS  Google Scholar 

  • Kubo M, Udagawa M, Nishikubo N, Horiguchi G, Yamaguchi M, Ito J, Mimura T, Fukuda H, Demura T (2005) Transcription switches for protoxylem and metaxylem vessel formation. Genes Dev 19:1855–1860

    Article  PubMed  CAS  Google Scholar 

  • Laosinchai W, Cui X, Brown RM Jr (2000) A full length cDNA of cotton cellulose synthase has high homology with the Arabidopsis RSW1 gene and the cotton CelA1 gene. Plant Physiol 122:291

    Article  Google Scholar 

  • Lee JJ, Woodward AW, Chen ZJ (2007) Gene expression changes and early events in cotton fibre development. Ann Bot 100:1391–1401

    Article  PubMed  CAS  Google Scholar 

  • Li CH, Zhu YQ, Meng YL, Wang JW, Xu KX, Zhang TZ, Chen XY (2002) Isolation of genes preferentially expressed in cotton fibers by cDNA filter arrays and RT-PCR. Plant Sci 163:1113–1120

    Article  CAS  Google Scholar 

  • Li Y, Qian Q, Zhou Y, Yan M, Suna L, Zhanga M, Fua Z, Wanga Y, Hanc B, Panga X, Chena M, Li J (2003) BRITTLE CULM1, which encodes a COBRA-like protein, affects the mechanical properties of rice plants. Plant Cell 15:2020–2031

    Article  PubMed  CAS  Google Scholar 

  • Liu D, Tu L, Wang L, Li Y, Zhu L, Zhang X (2008) Characterization and expression of plasma and tonoplast membrane aquaporins in elongating cotton fibers. Plant Cell Rep 27:1385–1394

    Article  PubMed  CAS  Google Scholar 

  • Meredith WR (2005a) Registration of MD 52ne high fiber quality cotton germplasm and recurrent parent MD 90ne. Crop Sci 45:806–807

    Article  Google Scholar 

  • Meredith WR (2005b) Minimum number of genes controlling cotton fiber strength in a backcross population. Crop Sci 45:1114–1119

    Article  Google Scholar 

  • Meyer JR, Meyer VG (1961) Origin and inheritance of nectariless cotton. Crop Sci 1:167–169

    Google Scholar 

  • Mitsuda N, Sekic M, Shinozaki K, Ohme-Takagi M (2005) The NAC transcription factors NST1 and NST2 of Arabidopsis regulate secondary wall thickenings and are required for anther dehiscence. Plant Cell 17:2993–3006

    Article  PubMed  CAS  Google Scholar 

  • Mitsuda N, Iwase A, Yamamoto H, Yoshida M, Seki M, Shinozaki K, Ohme-Takagi M (2007) NAC transcription factors, NST1 and NST3, are key regulators of the formation of secondary walls in woody tissues of Arabidopsis. Plant Cell 19:270–280

    Article  PubMed  CAS  Google Scholar 

  • National Cotton Council of America (2008) United States Cotton Production. http://www.cotton.org. Accessed 15 Sept 2008

  • Orford SJ, Timmis JN (1998) Specific expression of an expansin gene during elongation of cotton fibers. Biochim Biophys Acta 1398:342–346

    PubMed  CAS  Google Scholar 

  • Paredez AR, Somerville CR, Ehrhardt DW (2006) Visualization of cellulose synthase demonstrates functional association with microtubules. Science 312:1491–1495

    Article  PubMed  CAS  Google Scholar 

  • Park YH, Alabady MS, Ulloa M, Sickler B, Wilkins TA, Yu J, Stelly DM, Kohel RJ, el-Shihy OM, Cantrell RG (2005) Genetic mapping of new cotton fiber loci using EST-derived microsatellites in an interspecific recombinant inbred line cotton population. Mol Genet Genomics 274:428–441

    Article  PubMed  CAS  Google Scholar 

  • Pear JR, Kawagoe Y, Schreckengost WE, Delmer DP, Stalker DM (1996) Higher plants contain homologs of the bacterial celA genes encoding the catalytic subunit of cellulose synthase. Proc Natl Acad Sci USA 93:12637–12642

    Article  PubMed  CAS  Google Scholar 

  • Perrin RM, Wang Y, Yuen CY, Will J, Masson PH (2007) WVD2 is a novel microtubule-associated protein in Arabidopsis thaliana. Plant J 49:961–971

    Article  PubMed  CAS  Google Scholar 

  • Persson S, Wei H, Milne J, Page GP, Somerville CR (2005) Identification of genes required for cellulose synthesis by regression analysis of public microarray data sets. Proc Natl Acad Sci USA 102:8633–8638

    Article  PubMed  CAS  Google Scholar 

  • Pirooznia M, Nagarajan V, Deng Y (2007) GeneVenn—a web application for comparing gene lists using Venn diagrams. Bioinformation 1:420–422

    PubMed  Google Scholar 

  • Roudier F, Schindelman G, DeSalle R, Benfey PN (2002) The COBRA family of putative GPI-anchored proteins in Arabidopsis. A new fellowship in expansion. Plant Physiol 130:538–548

    Article  PubMed  CAS  Google Scholar 

  • Ruan YL, Llewellyn DJ, Furbank RT (2001) The control of single-celled cotton fiber elongation by developmentally reversible gating of plasmodesmata and coordinated expression of sucrose and K+ transporters and expansin. Plant Cell 13:47–60

    Article  PubMed  CAS  Google Scholar 

  • Ruan YL, Xu SM, White R, Furbank RT (2004) Genotypic and developmental evidence for the role of plasmodesmatal regulation in cotton fiber elongation mediated by callose turnover. Plant Physiol 136:4104–4113

    Article  PubMed  CAS  Google Scholar 

  • Seagull RW (1986) Changes in microtubule organization and wall microfibril orientation during in vitro cotton fiber development: an immunofluorescent study. Can J Bot 64:1373–1381

    Article  Google Scholar 

  • Shi YH, Zhu SW, Mao XZ, Feng JX, Qin YM, Zhang L, Cheng J, Wei LP, Wang ZY, Zhu YX (2006) Transcriptome profiling, molecular biological, and physiological studies reveal a major role for ethylene in cotton fiber cell elongation. Plant Cell 18:651–664

    Article  PubMed  CAS  Google Scholar 

  • Smart LB, Vojdani F, Maeshima M, Wilkins TA (1998) Genes involved in osmoregulation during turgor-driven cell expansion of developing cotton fibers are differentially regulated. Plant Physiol 116:1539–1549

    Article  PubMed  CAS  Google Scholar 

  • Taylor NG (2008) Cellulose biosynthesis and deposition in higher plants. New Phytol 178:239–252

    Article  PubMed  CAS  Google Scholar 

  • Taylor NG, Scheible WR, Cutler S, Somerville CR, Turner SR (1999) The irregular xylem3 locus of Arabidopsis encodes a cellulose synthase required for secondary cell wall synthesis. Plant Cell 11:769–780

    Article  PubMed  CAS  Google Scholar 

  • Thaker VS, Saroop S, Vaishnav PP, Singh YD (1989) Genotypic variations and influence of diurnal temperature on cotton fibre development. Field Crops Res 22:129–141

    Article  Google Scholar 

  • Triplett BA (1992) Strategies for improving cotton fiber quality. In: Cotton fiber cellulose: structure, function, and utilization. National Cotton Council, Memphis, TN, USA, pp 107–114

  • Tu LL, Zhang XL, Liang SG, Liu DQ, Zhu LF, Zeng FC, Nie YC, Guo XP, Deng FL, Tan JF, Xu L (2007) Genes expression analyses of sea-island cotton (Gossypium barbadense L.) during fiber development. Plant Cell Rep 26:1309–1320

    Article  PubMed  CAS  Google Scholar 

  • Udall JA, Flagel LE, Cheung F, Woodward AW, Hovav R, Rapp RA, Swanson JM, Lee JJ, Gingle AR, Nettleton D, Town CD, Chen ZJ, Wendel JF (2007) Spotted cotton oligonucleotide microarrays for gene expression analysis. BMC Genomics 8:81

    Article  PubMed  CAS  Google Scholar 

  • Wightman R, Turner SR (2008) The roles of the cytoskeleton during cellulose deposition at the secondary cell wall. Plant J 54:794–805

    Article  PubMed  CAS  Google Scholar 

  • Wilkins TA, Jernstedt JA (1999) Molecular genetics of developing cotton fibers. In: Basra AS (ed) Cotton fibers: developmental biology, quality improvement, and textile processing. The Hawthorn Press, NY, pp 231–269

    Google Scholar 

  • Wittmann T, Wilm M, Karsenti E, Vernos I (2000) TPX2, a novel Xenopus MAP involved in spindle pole organization. J Cell Biol 149:1405–1418

    Article  PubMed  CAS  Google Scholar 

  • Wolfinger RD, Gibson G, Wolfinger ED, Bennett L, Hamadeh H, Bushel P, Afshari C, Paules RS (2001) Assessing gene significance from cDNA microarray expression data via mixed models. J Comput Biol 8:625–637

    Article  PubMed  CAS  Google Scholar 

  • Wu Z, Soliman KM, Bolton JJ, Saha S, Jenkins JN (2007) Identification of differentially expressed genes associated with cotton fiber development in a chromosomal substitution line (CS-B22sh). Funct Integr Genomics 8:165–174

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi M, Kubo M, Fukuda H, Demura T (2008) VASCULAR-RELATED NAC-DOMAIN7 is involved in the differentiation of all types of xylem vessels in Arabidopsis roots and shoots. Plant J 55:652–664

    Article  PubMed  CAS  Google Scholar 

  • Yatsu LY, Jacks TJ (1981) An ultrastructural study of the relationship between microtubules and microfibrils in cotton (Gossypium hirsutum L.) cell wall reversals. Am J Bot 68:771–777

    Article  Google Scholar 

  • Yuan JS, Reed A, Chen F, Stewart CN Jr (2006) Statistical analysis of real-time PCR data. BMC Bioinformatics 7:85

    Article  PubMed  CAS  Google Scholar 

  • Yuen CY, Pearlman RS, Silo-Suh L, Hilson P, Carroll KL, Masson PH (2003) WVD2 and WDL1 modulate helical organ growth and anisotropic cell expansion in Arabidopsis. Plant Physiol 131:493–506

    Article  PubMed  CAS  Google Scholar 

  • Zhang D, Hrmova M, Wan CH, Wu C, Balzen J, Cai W, Wang J, Densmore LD, Fincher GB, Zhang H, Haigler CH (2004) Members of a new group of chitinase-like genes are expressed preferentially in cotton cells with secondary walls. Plant Mol Biol 54:353–372

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the staff of the United States Department of Agriculture-Agricultural Research Service, Crop Genetics and Production Research Unit for their technical expertise in conducting the field work. We also thank Jeff Cary, Jay Shockey, Josh Udall, Jonathan Wendel, Sam Yang, and two anonymous reviewers for their helpful comments during the preparation of this manuscript. This research was funded by United States Department of Agriculture-Agricultural Research Service project 6435-21000-015-00 and by a grant from the National Science Foundation Plant Genome Research Project—Award Number 0624077.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara A. Triplett.

Additional information

Communicated by H. T. Nguyen.

Mention of trade names or commercial products in this publication is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the United States Department of Agriculture.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hinchliffe, D.J., Meredith, W.R., Yeater, K.M. et al. Near-isogenic cotton germplasm lines that differ in fiber-bundle strength have temporal differences in fiber gene expression patterns as revealed by comparative high-throughput profiling. Theor Appl Genet 120, 1347–1366 (2010). https://doi.org/10.1007/s00122-010-1260-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-010-1260-6

Keywords

Navigation