Skip to main content
Log in

Clubroot resistance QTL are modulated by nitrogen input in Brassica napus

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

Nitrogen levels can modulate the effectiveness of clubroot resistance in an isolate- and host-specific manner. While the same QTL were detected under high and low nitrogen, their effects were altered.

Abstract

Clubroot, caused by Plasmodiophora brassicae, is one of the most damaging diseases of oilseed rape and is known to be affected by nitrogen fertilization. However, the genetic factors involved in clubroot resistance have not been characterized under nitrogen-limiting conditions. This study aimed to assess the variability of clubroot resistance under different nitrogen levels and to characterize the impact of nitrogen supply on genetic resistance factors. Linkage analyses and a genome-wide association study were conducted to detect QTL for clubroot resistance and evaluate their sensitivity to nitrogen. The clubroot response of a set of 92 diverse oilseed rape accessions and 108 lines derived from a cross between ‘Darmor-bzh’ (resistant) and ‘Yudal’ (susceptible) was studied in the greenhouse under high- and low-nitrogen conditions, following inoculation with the P. brassicae isolates eH and K92-16. Resistance to each isolate was controlled by a major QTL and a few small-effects QTL. While the same QTL were detected under both high and low nitrogen, their effects were altered. Clubroot resistance to isolate eH, but not K92-16, was greater under a low-N supply versus a high-N supply. New sources of resistance were found among the oilseed rape accessions under both low and high-N conditions. The results are discussed relative to the literature and from a crop improvement perspective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Arkoun M, Sarda X, Jannin L, Laîné P, Etienne P, Garcia-Mina J-M, Yvin J-C, Ourry A (2012) Hydroponics versus field lysimeter studies of urea, ammonium and nitrate uptake by oilseed rape (Brassica napus L.). J Exp Bot 63:5245–5258

    Article  CAS  PubMed  Google Scholar 

  • Ballini E, Nguyen TT, Morel J-B (2013) Diversity and genetics of nitrogen-induced susceptibility to the blast fungus in rice and wheat. Rice 6:32

    Article  PubMed  PubMed Central  Google Scholar 

  • Bates D, Maechler M, Bolker B, Walker S (2014) lme4: linear mixed-effects models using Eigen and S4. R package version 1

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc 57:289–300

    Google Scholar 

  • Bouchet A-S, Nesi N, Bissuel C, Bregeon M, Lariepe A, Navier H, Ribière N, Orsel M, Grezes-Besset B, Renard M, Laperche A (2014) Genetic control of yield and yield components in winter oilseed rape (Brassica napus L.) grown under nitrogen limitation. Euphytica 199:183–205

    Article  CAS  Google Scholar 

  • Bouchet A-S, Laperche A, Bissuel-Belaygue C, Baron C, Morice J, Rousseau-Gueutin M, Dheu JE, George P, Pinochet X, Foubert T, Maes O, Dugué D, Guinot F, Nesi N (2016) Genetic basis of nitrogen use efficiency and yield stability across environments in winter rapeseed. BMC Genet 17:131

    Article  PubMed  PubMed Central  Google Scholar 

  • Broman KW, Wu H, Sen Ś, Churchill GA (2003) R/qtl: QTL mapping in experimental crosses. Bioinformatics 19:889–890

    Article  CAS  PubMed  Google Scholar 

  • Brun H, Chevre AM, Fitt BD, Powers S, Besnard AL, Ermel M, Huteau V, Marquer B, Eber F, Renard M, Andrivon D (2010) Quantitative resistance increases the durability of qualitative resistance to Leptosphaeria maculans in Brassica napus. New Phytol 185:285–299

    Article  PubMed  Google Scholar 

  • Buczacki S, Toxopeus H, Mattusch P, Johnston T, Dixon G, Hobolth L (1975) Study of physiologic specialization in Plasmodiophora brassicae: proposals for attempted rationalization through an international approach. T Brit Mycol Soc 65:295–303

    Article  Google Scholar 

  • Chu M, Song T, Falk KC, Zhang X, Liu X, Chang A, Lahlali R, McGregor L, Gossen BD, Yu F (2014) Fine mapping of Rcr1 and analyses of its effect on transcriptome patterns during infection by Plasmodiophora brassicae. BMC Genom 15:1166

    Article  Google Scholar 

  • Clarke WE, Higgins EE, Plieske J et al (2016) A high-density SNP genotyping array for Brassica napus and its ancestral diploid species based on optimised selection of single-locus markers in the allotetraploid genome. Theor Appl Genet 129:1887. doi:10.1007/s00122-016-2746-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Givry S, Bouchez M, Chabrier P, Milan D, Schiex T (2005) CARTHAGENE: multipopulation integrated genetic and radiation hybrid mapping. Bioinformatics 21:1703–1704

    Article  PubMed  Google Scholar 

  • Delourme R, Falentin C, Fopa Fomeju B, Boillot M, Lassalle G, André I, Duarte J, Gauthier V, Lucante N, Marty A, Pauchon M, Pichon JP, Ribière N, Trotoux G, Blanchard P, Rivière N, Martinant JP, Pauquet J (2013) High-density SNP-based genetic map development and linkage disequilibrium assessment in Brassica napus L. BMC Genom 14:120

    Article  CAS  Google Scholar 

  • Dixon GR (2009a) The occurrence and economic impact of Plasmodiophora brassicae and clubroot disease. J Plant Growth Regul 28:194–202

    Article  CAS  Google Scholar 

  • Dixon GR (2009b) Plasmodiophora brassicae in its environment. J Plant Growth Regul 28:212–228

    Article  CAS  Google Scholar 

  • Dordas C (2008) Role of nutrients in controlling plant diseases in sustainable agriculture: a review. Agron Sustain Dev 28:33–46

    Article  CAS  Google Scholar 

  • Dumas JBA (1831) Procédés de l’analyse organique. Annal Chem Phys 2:198–213

    Google Scholar 

  • Elmer P, Spiers T, Wood P (2007) Effects of pre-harvest foliar calcium sprays on fruit calcium levels and brown rot of peaches. Crop Prot 26:11–18

    Article  CAS  Google Scholar 

  • Fagard M, Launay A, Clement G, Courtial J, Dellagi A, Farjad M, Krapp A, Soulie MC, Masclaux-Daubresse C (2014) Nitrogen metabolism meets phytopathology. J Exp Bot 65:5643–5656

    Article  CAS  PubMed  Google Scholar 

  • Fähling M, Graf H, Siemens J (2003) Pathotype separation of Plasmodiophora brassicae by the host plant. J Phytopathol 151:425–430

    Article  Google Scholar 

  • Gazave E, Tassone EE, Ilut DC, Wingerson M, Datema E, Witsenboer HM, Davis JB, Grant D, Dyer JM, Jenks MA (2016) Population genomic analysis reveals differential evolutionary histories and patterns of diversity across subgenomes and subpopulations of Brassica napus L. Front Plant Sci 7:525

    Article  PubMed  PubMed Central  Google Scholar 

  • Gossen BD, Deora A, Peng G, Hwang S-F, McDonald MR (2014) Effect of environmental parameters on clubroot development and the risk of pathogen spread. Can J Plant Pathol 36:37–48

    Article  Google Scholar 

  • Hasan MJ, Rahman M (2016) Genetics and molecular mapping of resistance to Plasmodiophora brassicae pathotypes 2, 3, 5, 6 and 8 in rutabaga (Brassica napus var. napobrassica). Genome 59:1–11

    Article  Google Scholar 

  • Kageyama K, Asano T (2009) Life Cycle of Plasmodiophora brassicae. J Plant Growth Regul 28:203–211

    Article  CAS  Google Scholar 

  • Kato T, Hatakeyama K, Fukino N, Matsumoto S (2012) Identification of a clubroot resistance locus conferring resistance to a Plasmodiophora brassicae classified into pathotype group 3 in Chinese cabbage (Brassica rapa L.). Breeding Sci 62:282–287

    Article  CAS  Google Scholar 

  • Kato T, Hatakeyama K, Fukino N, Matsumoto S (2013) Fine mapping of the clubroot resistance gene CRb and development of a useful selectable marker in Brassica rapa. Breed Sci 63:116–124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuznetsova A, Brockhoff PB, Christensen RHB (2015) Package ‘lmerTest’. R package version 2

  • Lecomte L, Duffé P, Buret M, Servin B, Hospital F, Causse M (2004) Marker-assisted introgression of five QTLs controlling fruit quality traits into three tomato lines revealed interactions between QTLs and genetic backgrounds. Theor Appl Genet 109:658–668

    Article  CAS  PubMed  Google Scholar 

  • Lee J, Izzah NK, Choi B-S, Joh HJ, Lee S-C, Perumal S, Seo J, Ahn K, Jo EJ, Choi GJ, Nou I-S, Yu Y, Yang T-J (2016) Genotyping-by-sequencing map permits identification of clubroot resistance QTLs and revision of the reference genome assembly in cabbage (Brassica oleracea L.). DNA Res 23:29–41

    CAS  PubMed  Google Scholar 

  • Lipka AE, Tian F, Wang Q, Peiffer J, Li M, Bradbury PJ, Gore MA, Buckler ES, Zhang Z (2012) GAPIT: genome association and prediction integrated tool. Bioinformatics 28:2397–2399

    Article  CAS  PubMed  Google Scholar 

  • Lombard V, Delourme R (2001) A consensus linkage map for rapeseed (Brassica napus L.): construction and integration of three individual maps from DH populations. Theor Appl Genet 103:491–507

    Article  CAS  Google Scholar 

  • Manzanares-Dauleux M, Delourme R, Baron F, Thomas G (2000) Mapping of one major gene and of QTLs involved in resistance to clubroot in Brassica napus. Theor Appl Genet 101:885–891

    Article  CAS  Google Scholar 

  • Manzanares-Dauleux M, Delourme R, Glory P, Giboulot A, Thomas G (2003) Mapping QTLs and major resistance genes to clubroot (Plasmodiophora brassicae) in Brassica napus. 13th Crucifer Genetics Workshop, UC Davis, March, California, pp 23–26

    Google Scholar 

  • Matsumoto E, Yasui C, Ohi M, Tsukada M (1998) Linkage analysis of RFLP markers for clubroot resistance and pigmentation in Chinese cabbage (Brassica rapa ssp. pekinensis). Euphytica 104:79–86

    Article  CAS  Google Scholar 

  • McDonald BA, Linde C (2002) Pathogen population genetics, evolutionary potential, and durable resistance. Annu Rev Phytopathol 40:349–379

    Article  CAS  PubMed  Google Scholar 

  • Nagaoka T, Doullah MA, Matsumoto S, Kawasaki S, Ishikawa T, Hori H, Okazaki K (2010) Identification of QTLs that control clubroot resistance in Brassica oleracea and comparative analysis of clubroot resistance genes between B. rapa and B. oleracea. Theor Appl Genet 120:1335–1346

    Article  CAS  PubMed  Google Scholar 

  • Osaki K, Tanaka S, S-i Ito (2008) Pathogenicity of Plasmodiophora brassicae populations from small, spheroid, resistant-type clubroot galls on roots of clubroot-resistant cultivars of Chinese cabbage (Brassica rapa L. subsp. pekinensis). J Gen Plant Pathol 74:242–245

    Article  Google Scholar 

  • Piao Z, Ramchiary N, Lim YP (2009) Genetics of clubroot resistance in Brassica species. J Plant Growth Regul 28:252–264

    Article  CAS  Google Scholar 

  • Pryor DE (1940) The effect of some mineral nutrients on the development of clubroot of crucifers. J Agric Res 61:149–160

    CAS  Google Scholar 

  • Rahman H, Peng G, Yu F, Falk KC, Kulkarni M, Selvaraj G (2014) Genetics and breeding for clubroot resistance in Canadian spring canola (Brassica napus L.). Can J Plant Pathol 36:122–134

    Article  Google Scholar 

  • Rocherieux J, Glory P, Giboulot A, Boury S, Barbeyron G, Thomas G, Manzanares-Dauleux MJ (2004) Isolate-specific and broad-spectrum QTLs are involved in the control of clubroot in Brassica oleracea. Theor Appl Genet 108:1555–1563

    Article  CAS  PubMed  Google Scholar 

  • Saito M, Kubo N, Matsumoto S, Suwabe K, Tsukada M, Hirai M (2006) Fine mapping of the clubroot resistance gene, Crr3, in Brassica rapa. Theor Appl Genet 114:81–91

    Article  CAS  PubMed  Google Scholar 

  • Sakamoto K, Saito A, Hayashida N, Taguchi G, Matsumoto E (2008) Mapping of isolate-specific QTLs for clubroot resistance in Chinese cabbage (Brassica rapa L. ssp. pekinensis). Theor Appl Genet 117:759–767

    Article  CAS  PubMed  Google Scholar 

  • Somé A, Manzanares M, Laurens F, Baron F, Thomas G, Rouxel F (1996) Variation for virulence on Brassica napus L. amongst Plasmodiophora brassicae collections from France and derived single-spore isolates. Plant Pathol 45:432–439

    Article  Google Scholar 

  • Souza AA, Boscariol RL, Moon DH, Camargo LE, Tsai SM (2000) Effects of Phaseolus vulgaris QTL in controlling host-bacteria interactions under two levels of nitrogen fertilization. Genet Mol Biol 23:155–161

    Article  CAS  Google Scholar 

  • Strelkov SE, Hwang S-F, Manolii VP, Cao T, Feindel D (2016) Emergence of new virulence phenotypes of Plasmodiophora brassicae on canola (Brassica napus) in Alberta, Canada. Eur J Plant Pathol 145:517–529

    Article  Google Scholar 

  • Suwabe K, Tsukazaki H, Iketani H, Hatakeyama K, Fujimura M, Nunome T, Fukuoka H, Matsumoto S, Hirai M (2003) Identification of two loci for resistance to clubroot (Plasmodiophora brassicae Woronin) in Brassica rapa L. Theor Appl Genet 107:997–1002

    Article  CAS  PubMed  Google Scholar 

  • Talukder ZI, McDonald AJ, Price AH (2005) Loci controlling partial resistance to rice blast do not show marked QTL × environment interaction when plant nitrogen status alters disease severity. New Phytol 168:455–464

    Article  CAS  PubMed  Google Scholar 

  • Tanaka S, Sakamoto Y, Kajima K, Fujieda K, Katumoto K, Nishi Y (1991) Pathogenicity of three isolates of clubroot fungus attacking clubroot-resistant cultivars of Chinese cabbage. Bull Fac Agric-Yamaguchi Univ 39:113–122 (Japan)

    Google Scholar 

  • Tanaka S, Fujiyama S, Shigemori S, Nakayama A, Ito S, Kameya Iwaki M (1998) Pathogenesis of isolates of Plasmodiophora brassicae from Japan, 1: race and pathogenesis in clubroot resistant cultivars. Proceedings of the Association for Plant Protection of Kyushu (Japan) 44:15–19

  • Tomita H, Shimizu M, Doullah MA-u, Fujimoto R, Okazaki K (2013) Accumulation of quantitative trait loci conferring broad-spectrum clubroot resistance in Brassica oleracea. Mol Breed 32:889–900

    Article  CAS  Google Scholar 

  • VanRaden P (2008) Efficient methods to compute genomic predictions. J Dairy Sci 91:4414–4423

    Article  CAS  PubMed  Google Scholar 

  • Wagner G, Charton S, Lariagon C, Laperche A, Lugan R, Hopkins J, Frendo P, Bouchereau A, Delourme R, Gravot A (2012) Metabotyping: a new approach to investigate rapeseed (Brassica napus L.) genetic diversity in the metabolic response to clubroot infection. Mol Plant Microbe Interact 25:1478–1491

    Article  CAS  PubMed  Google Scholar 

  • Walters DR, Bingham IJ (2007) Influence of nutrition on disease development caused by fungal pathogens: implications for plant disease control. Ann Appl Biol 151:307–324

    Article  CAS  Google Scholar 

  • Werner S, Diederichsen E, Frauen M, Schondelmaier J, Jung C (2008) Genetic mapping of clubroot resistance genes in oilseed rape. Theor Appl Genet 116:363–372

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Ersoz E, Lai C-Q, Todhunter RJ, Tiwari HK, Gore MA, Bradbury PJ, Yu J, Arnett DK, Ordovas JM (2010) Mixed linear model approach adapted for genome-wide association studies. Nat Genet 42:355–360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Feng J, Hwang SF, Strelkov S, Falak I, Huang X, Sun R (2015) Mapping of clubroot (Plasmodiophora brassicae) resistance in canola (Brassica napus). Plant Pathol 65:435–440

    Article  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge Cyril Falentin, Gwenaëlle Deniot and Gilles Lassalle for the production of the genetic maps. The authors are grateful to the technical teams for data collection, especially to Jocelyne Lemoine, Christine Lariagon and Kevin Gazengel, as well as to the technical team in charge of the greenhouses: Laurent Charlon and Patrick Rolland. We acknowledge the CRMPO (Centre Régional de Mesures Physiques de l’Ouest) for the technical assistance with N analyses. The authors thank the students of AGROCAMPUS OUEST who participated in the phenotyping and who carried out the firsts runs of the analysis. The authors would like to thank the BrACySol biological resource center (INRA Ploudaniel, France) for providing the seeds used in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to MJ. Manzanares-Dauleux.

Ethics declarations

Disclosure of potential conflicts of interest

This study was funded by the French Association for the Promotion of Oilseed Crops Breeding (PROMOSOL). Yoann Aigu is the recipient of a 3-year PhD fellowship from the University of Rennes1.

Additional information

Communicated by Isobel AP Parkin.

A. Laperche and Y. Aigu have contributed equally to the work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 105 kb)

Supplementary material 2 (PDF 49 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Laperche, A., Aigu, Y., Jubault, M. et al. Clubroot resistance QTL are modulated by nitrogen input in Brassica napus . Theor Appl Genet 130, 669–684 (2017). https://doi.org/10.1007/s00122-016-2842-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-016-2842-8

Keywords

Navigation