Skip to main content

Advertisement

Log in

Dose-dependent changes in renal 1H-/23Na MRI after adjuvant radiochemotherapy for gastric cancer

Dosisabhängige Veränderungen im 1H-/23Na-MRT der Niere nach adjuvanter Radiochemotherapie beim Magenkarzinom

  • Original article
  • Published:
Strahlentherapie und Onkologie Aims and scope Submit manuscript

Abstract

Purpose

Combined radiochemotherapy (RCT) for gastric cancer with three-dimensional conformal radiotherapy (3D-CRT) results in ablative doses to the upper left kidney, while image-guided intensity-modulated radiotherapy (IG-IMRT) allows kidney sparing despite improved target coverage. Renal function in long-term gastric cancer survivors was evaluated with 3T functional magnetic resonance imaging (MRI) including diffusion-weighted imaging (DWI) and 23Na imaging.

Patients and methods

Five healthy volunteers and 13 patients after radiotherapy were included: 11×IG-IMRT; 1×3D-CRT; 1× “positive control” with stereotactic body radiotherapy (SBRT) of a metastasis between the spleen/left kidney. Radiation doses were documented for the upper/middle/lower kidney subvolumes. Late toxicity was evaluated based on CTC criteria, questionnaire, and creatinine values. Morphological sequences, DWI images, and 23Na images were acquired using a 1H/23Na-tuned body-coil before/after intravenous water load (WL). Statistics for [23Na] (concentration) and apparent diffusion coefficient (ADC) values were calculated for upper/middle/lower renal subvolumes. Corticomedullary [23Na] gradients and [23Na] differences after WL were determined.

Results

No major morphological alteration was detected in any patient. Minor scars were observed in the cranial subvolume of the left kidney of the 3D-CRT and the whole kidney of the control SBRT patient. All participants presented a corticomedullary [23Na] gradient. After WL, a significant physiological [23Na] gradient decrease (p < 0.001) was observed in all HV and IG-IMRT patients. In the cranial left kidney of the 3D-CRT patient and the positive control SBRT patient, the decrease was nonsignificant (p = 0.01, p = 0.02). ADC values were altered nonsignificantly in all renal subvolumes (all participants). Renal subvolumes with doses ≥ 35 Gy showed a reduced change of the [23Na] gradient after WL (p = 0.043). No participants showed clinical renal impairment.

Conclusions

Functional parameters of renal 23Na MRI after gastric IG-IMRT are identical to those of healthy volunteers, in contrast to renal subvolumes after ablative doses in the control and 3D-CRT patient. While kidney doses to the cortex below 20–25 Gy in fractional doses of ~ 1 Gy in IG-IMRT (combined with intensified chemotherapy) do not seem to cause significant MRI morphological or functional alterations, doses of > 35 Gy in 1.5–2 Gy fractions clearly result in impairment.

Zusammenfassung

Zielsetzung

Die Radiochemotherapie (RCT) des Magenkarzinoms mit 3-dimensionaler konformaler Strahlentherapie (3D-CRT) belastet den linken Nierenoberpol mit ablativen Strahlendosen. Die bildgeführte, intensitätsmodulierte Strahlentherapie (IG-IMRT) ermöglicht die Aussparung des Nierenparenchyms bei verbesserter Zielvolumenabdeckung. Die Nierenfunktion wurde mit 3 T-funktioneller MRT (diffusionsgewichtete Bildgebung; DWI) und 23Na-Bildgebung in einer Kohorte von Patienten mit langem Follow-up ausgewertet.

Patienten/Methoden

Es wurden 5 gesunde Probanden (HV) und 12 Patienten mit Magenkarzinom (11-mal IG-IMRT; 1-mal 3D-CRT) sowie ein Patient als „positive-Kontrolle“ (nach Behandlung einerMetastase zwischen Milz und linker Niere mit SBRT [„stereotactic-body-radiotherapy“]) untersucht. Die Bestrahlungsdosen wurden für die oberen, mittleren und unteren Nierenetagen getrennt dokumentiert. Spättoxizität wurde basierend auf den allgemeinen Toxizitätskriterien (CTC, Common Toxicity Criteria), mittels Fragebogen und anhand der Kreatininwerte bestimmt. Morphologische Sequenzen, DWI- und 23Na-Bilder wurden mit einer 1H/23Na-Spule vor und nach intravenöser Flüssigkeitszufuhr („water load“, WL) akquiriert. Die statistische Auswertung erfolgte für [23Na]-Konzentration und ADC („apparent diffusion coefficient“)-Werte getrennt nach Subvolumina (obere, mittlere und untere Nierenetagen). Kortikomedulläre [23Na]-Gradienten und [23Na]-Unterschiede nach WL wurden bestimmt.

Ergebnisse

Grobmorphologische Veränderungen wurden nicht detektiert. Kleine narbige Veränderungen wurden im linken Nierenoberpol (3D-CRT) und in der ganzen Niere des SBRT-Kontollpatienten beobachtet. Alle Untersuchten zeigten physiologische kortikomedulläre [23Na]-Gradienten. Nach WL wurde in allen HV und IG-IMRT-Patienten ein signifikanter physiologischer Abfall des [23Na]-Gradienten beobachtet (p < 0,001). Im linken Nierenoberpol des 3D-CRT-Patienten und dem „positivKontroll-SBRT“-Patienten war dieser Abfall nicht signifikant (p = 0,01; p = 0,02). Die ADC-Werte änderten sich in allen Subvolumina nicht signifikant. Subvolumina, die mit Dosen ≥ 35 Gy bestrahlt wurden, zeigten einen eingeschränkten Abfall des [23Na]-Gradienten nach WL (p = 0,043). Kein Patient wies eine klinische Symptomatik auf.

Schlussfolgerung

Funktionelle Parameter der 23Na-MRT der Niere nach adjuvanter IG-IMRT sind identisch zu gesunden Probanden, im Gegensatz zu Nierensubvolumina, die mit ablativen Dosen belastet wurden. Während kortikale Dosen unter 20–25 Gy in Fraktionsdosen von ~ 1 Gy nach IG-IMRT (kombiniert mit intensivierter Chemotherapie) keine MR-morphologischen oder funktionellen Veränderungen verursachen, resultieren Dosen von > 35 Gy in Fraktionsdosen von 1,5–2 Gy in manifesten Beeinträchtigungen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Boda-Heggemann J, Mennemeyer P, Wertz H et al (2009) Accuracy of ultrasound-based image guidance for daily positioning of the upper abdomen: an online comparison with cone beam CT. Int J Radiat Oncol Biol Phys 74:892–897

    Article  PubMed  Google Scholar 

  2. Boda-Heggemann J, Hofheinz RD, Weiss C et al (2009) Combined adjuvant radiochemotherapy with IMRT/XELOX improves outcome with low renal toxicity in gastric cancer. Int J Radiat Oncol Biol Phys 75:1187–1195

    Article  PubMed  Google Scholar 

  3. Boda-Heggemann J, Lohr F, Wenz F, Flentje M, Guckenberger M (2011) kV cone-beam CT-based IGRT: a clinical review. Strahlenther Onkol 187:284–291

    Article  PubMed  Google Scholar 

  4. Boda-Heggemann J, Guckenberger M, Ganswindt U et al (2012) Image-guided radiation therapy. Der Radiologe 52:213–221

    Article  CAS  PubMed  Google Scholar 

  5. Boda-Heggemann J, Weiss C, Schneider V et al (2013) Adjuvant IMRT/XELOX radiochemotherapy improves long-term overall- and disease-free survival in advanced gastric cancer. Strahlenther Onkol 189:417–423

    Article  CAS  PubMed  Google Scholar 

  6. Dikken JL, van Sandick JW, Maurits Swellengrebel HA et al (2011) Neo-adjuvant chemotherapy followed by surgery and chemotherapy or by surgery and chemoradiotherapy for patients with resectable gastric cancer (CRITICS). BMC Cancer 11:329

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Fakhrian K, Ordu AD, Lordick F et al (2014) Long-term outcomes of trimodality treatment for squamous cell carcinoma of the esophagus with cisplatin and/or 5-FU: More than 20 years’ experience at a single institution. Strahlenther Onkol (epub ahead of print)

  8. Guckenberger M, Meyer J, Wilbert J, Baier K, Sauer O Flentje M (2007) Precision of image-guided radiotherapy (IGRT) in six degrees of freedom and limitations in clinical practice. Strahlenther Onkol 183:307–313

    Article  PubMed  Google Scholar 

  9. Haneder S, Konstandin S, Morelli JN et al (2011) Quantitative and qualitative 23Na MR imaging of the human kidneys at 3 T: before and after a water load. Radiology 260:857–865

    Article  PubMed  Google Scholar 

  10. Haneder S, Juras V, Michaely HJ et al (2013) In vivo sodium (Na) imaging of the human kidneys at 7 T: preliminary results. Eur Radiol 24(2):494–501

  11. Haneder S, Kettnaker P, Konstandin S et al (2013) Quantitative in vivo (23)Na MR imaging of the healthy human kidney: determination of physiological ranges at 3.0 T with comparison to DWI and BOLD. Magma 26:501–509

    Article  CAS  PubMed  Google Scholar 

  12. Haneder S, Konstandin S, Morelli JN, Schad LR, Schoenberg SO, Michaely HJ (2013) Assessment of the renal corticomedullary (23)Na gradient using isotropic data sets. Acad Radiol 20:407–413

    Article  PubMed  Google Scholar 

  13. Haneder S, Michaely HJ, Schoenberg SO et al (2012) Assessment of renal function after conformal radiotherapy and intensity-modulated radiotherapy by functional 1 H-MRI and 23Na-MRI. Strahlenther Onkol 188:1146–1154

    Article  CAS  PubMed  Google Scholar 

  14. Haneder S, Michaely HJ, Konstandin S et al (2013) 3 T Renal Na-MRI: effects of desmopressin in patients with central diabetes insipidus. Magma 27(1):47–52.

  15. Hofheinz RD, Wenz F, Lukan N et al (2009) Oxaliplatin and capecitabine-based chemoradiotherapy for gastric cancer-an extended phase I MARGIT and AIO trial. Int J Radiat Oncol Biol Phys 73:142–147

    Article  CAS  PubMed  Google Scholar 

  16. Huber K (2013) Cancer of the esophagus and gastroesophageal junction: improved survival with neoadjuvant radiochemotherapy. Strahlenther Onkol 189:161–162

    Article  CAS  PubMed  Google Scholar 

  17. Jansen EP, Boot H, Saunders MP et al (2007) A phase I-II study of postoperative capecitabine-based chemoradiotherapy in gastric cancer. Int J Radiat Oncol Biol Phys 69:1424–1428

    Article  CAS  PubMed  Google Scholar 

  18. Jansen EP, Saunders MP, Boot H et al (2007) Prospective study on late renal toxicity following postoperative chemoradiotherapy in gastric cancer. Int J Radiat Oncol Biol Phys 67:781–785

    Article  CAS  PubMed  Google Scholar 

  19. Lee J, Lim do H, Kim S et al (2012) Phase III trial comparing capecitabine plus cisplatin versus capecitabine plus cisplatin with concurrent capecitabine radiotherapy in completely resected gastric cancer with D2 lymph node dissection: the ARTIST trial. J Clin Oncol 30:268–273

    Article  CAS  PubMed  Google Scholar 

  20. Li LP, Halter S, Prasad PV (2008) Blood oxygen level-dependent MR imaging of the kidneys. Magn Reson Imaging Clin N Am 16:613–625

    Article  PubMed Central  PubMed  Google Scholar 

  21. Lohr F, Dobler B, Mai S et al (2003) Optimization of dose distributions for adjuvant locoregional radiotherapy of gastric cancer by IMRT. Strahlenther Onkol 179:557–563

    Article  PubMed  Google Scholar 

  22. Macdonald JS, Fleming TR, Peterson RF et al (1995) Adjuvant chemotherapy with 5-FU, adriamycin, and mitomycin-C (FAM) versus surgery alone for patients with locally advanced gastric adenocarcinoma: a Southwest Oncology Group study. Ann Surg Oncol 2:488–494

    Article  CAS  PubMed  Google Scholar 

  23. Michaely HJ, Metzger L, Haneder S, Hansmann J, Schoenberg SO, Attenberger UI (2012) Renal BOLD-MRI does not reflect renal function in chronic kidney disease. Kidney Int 81:684–689

    Article  CAS  PubMed  Google Scholar 

  24. Nagel AM, Laun FB, Weber MA, Matthies C, Semmler W, Schad LR (2009) Sodium MRI using a density-adapted 3D radial acquisition technique. Magn Reson Med 62:1565–1573

    Article  PubMed  Google Scholar 

  25. Ohri N, Garg MK, Aparo S et al (2013) Who benefits from adjuvant radiation therapy for gastric cancer? A meta-analysis. Int J Radiat Oncol Biol Phys 86:330–335

    Article  PubMed  Google Scholar 

  26. Smalley SR, Benedetti JK, Haller DG et al (2012) Updated analysis of SWOG-directed intergroup study 0116: a phase III trial of adjuvant radiochemotherapy versus observation after curative gastric cancer resection. J Clin Oncol 30:2327–2333

    Article  CAS  PubMed  Google Scholar 

  27. Thoeny HC, Zumstein D, Simon-Zoula S et al (2006) Functional evaluation of transplanted kidneys with diffusion-weighted and BOLD MR imaging: initial experience. Radiology 241:812–821

    Article  PubMed  Google Scholar 

  28. Welz S, Hehr T, Kollmannsberger C, Bokemeyer C, Belka C Budach W (2007) Renal toxicity of adjuvant chemoradiotherapy with cisplatin in gastric cancer. Int J Radiat Oncol Biol Phys 69:1429–1435

    Article  CAS  PubMed  Google Scholar 

  29. Wieland P, Dobler B, Mai S et al (2004) IMRT for postoperative treatment of gastric cancer: covering large target volumes in the upper abdomen: a comparison of a step-and-shoot and an arc therapy approach. Int J Radiat Oncol Biol Phys 59:1236–1244

    Article  PubMed  Google Scholar 

  30. Xu X, Fang W, Ling H, Chai W Chen K (2010) Diffusion-weighted MR imaging of kidneys in patients with chronic kidney disease: initial study. Eur Radiol 20:978–983

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Parts of these studies were supported by research grants from Elekta AB, Stockholm, Sweden, and Siemens Healthcare, Erlangen, Germany.

J. Boda-Heggemann is supported by the Ministerium für Bildung und Forschung, Baden-Württemberg and the ESF (European Social Funds).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Judit Boda-Heggemann MD, PhD.

Ethics declarations

Conflict of interest

S. Haneder, J.M. Budjan, S.O. Schoenberg, S. Konstandin, L.R. Schad, R.D. Hofheinz, V. Gramlich, F. Wenz, F. Lohr and J. Boda-Heggemann state that there are no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haneder, S., Budjan, J., Schoenberg, S. et al. Dose-dependent changes in renal 1H-/23Na MRI after adjuvant radiochemotherapy for gastric cancer. Strahlenther Onkol 191, 356–364 (2015). https://doi.org/10.1007/s00066-014-0787-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00066-014-0787-x

Keywords

Schlüsselwörter

Navigation