Skip to main content
Log in

Therapeutisches Drug Monitoring und individualisierte Dosierung von Antibiotika bei der Sepsis

Modern oder nur „modisch“?

Therapeutic drug monitoring and individual dosing of antibiotics during sepsis

Modern or just “trendy”?

  • Übersichten
  • Published:
Medizinische Klinik - Intensivmedizin und Notfallmedizin Aims and scope Submit manuscript

Zusammenfassung

Schwere Sepsis und septischer Schock führen bei fast allen antiinfektiven Substanzen zu einer erheblichen Veränderung der substanzspezifischen Pharmakokinetik, die möglicherweise erheblich die Wirkortkonzentration und damit die Wirksamkeit der Antibiotika beeinflusst.

Um ein weites Spektrum möglicher Erreger beim kritisch Kranken sicher zu erfassen, werden Breitspektrumantibiotika in möglichst hohen Konzentrationen am Wirkort benötigt. Empfohlene Dosierungen und in Antibiogrammen ausgewiesene Sensibilitäten (sensibel, intermediär oder resistent getestet) beruhen auf der Annahme, dass die Pharmakokinetik des Arzneistoffs der eines „Normpatienten“ entspricht. Tatsächlich ist jedoch die Verteilung und Ausscheidungskapazität der Arzneistoffe beim kritisch Kranken sehr variabel und schwer vorhersehbar. Allein die Nierenfunktion von Patienten mit schweren Infektionen zeigt eine große inter- und intraindividuelle Variabilität, sodass die Arzneistoffclearance und damit die optimale Dosierung überwiegend renal ausgeschiedener Antiinfektiva um den Faktor 10 variieren kann. Vor dem Hintergrund der pathophysiologischen Veränderungen im Bereich der Pharmakokinetik (PK) bei schwerer Sepsis erscheinen individuelle Dosierungen und das Therapeutisches Drug-Monitoring (TDM) von β‑Lactam-Antibiotika wichtig, um eine zeitgerechte und adäquate antiinfektive Therapie sicherzustellen. Bei bekannter minimaler Hemmkonzentration (MHK) ist auf Basis gemessener Arzneistoff-Konzentrationen und der Zusammenhänge von PK und Pharmakodynamik (PD) (zeit-, konzentrationsabhängige Wirksamkeit) eine Einstellung auf optimale Serumspiegel möglich.

Die antiinfektive Therapie bei kritisch Kranken vor allem septischen Intensivpflegepatienten ist heute mehr als nur eine Frage der richtigen Substanz und einer zeitnahen Applikation. Individuelle Dosierung, prolongierte Applikation und therapeutisches TDM eröffnen möglicherweise neue, interessante Horizonte.

Abstract

Pharmacokinetic variability of anti-infective drugs due to pathophysiological changes by severe sepsis and septic shock is a well-known problem for critically ill patients resulting in suboptimal serum and most likely tissue concentrations of these agents.

To cover a wide range of potential pathogens, high concentrations of broad spectrum anti-infectives have to reach the site of infection. Microbiological susceptibility testing (susceptible, intermediate, resistant) don’t take the pharmacokinetic variability into account and are based on data generated by non-critically ill patients. But inter-patient variability in distribution and elimination of anti-infective drugs in ICU patients is extremely high and also highly unpredictable. Drug clearance of mainly renally eliminated drugs and thus the required dose can differ up to 10-fold due to the variability in renal function in patients with severe infections. To assure a timely and adequate anti-infective regime, individual dosing and therapeutic drug monitoring (TDM) seem to be appropriate tools in the setting of pathophysiological changes in pharmacokinetics (PK) and pharmakodynamics (PD) due to severe sepsis. In the case of known minimal inhibitory concentration, PK/PD indices (time or peak concentration dependent activity) and measured serum level can provide an optimal target concentration for the individual drug and patient.

Modern anti-infective management for ICU patients includes more than the choice of drug and prompt application. Individual dosing, optimized prolonged infusion time and TDM give way to new and promising opportunities in infection control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3

Literatur

  1. Abdul-Aziz MH, Sulaiman H, Mat-Nor MB, Rai V, Wong KK, Hasan MS, Abd Rahman AN, Jamal JA, Wallis SC, Lipman J, Staatz CE, Roberts JA (2016) Beta-Lactam Infusion in Severe Sepsis (BLISS): a prospective, two-centre, open-labelled randomised controlled trial of continuous versus intermittent beta-lactam infusion in critically ill patients with severe sepsis. Intensive Care Med. doi:10.1007/s00134-015-4188-0

    PubMed  Google Scholar 

  2. Ambrose PG, Bhavnani SM, Rubino CM, Louie A, Gumbo T, Forrest A, Drusano GL (2007) Pharmacokinetics-pharmacodynamics of antimicrobial therapy: it’s not just for mice anymore. Clin Infect Dis 44:79–86

    Article  CAS  PubMed  Google Scholar 

  3. Angus DC, van Der PT (2013) Severe sepsis and septic shock. N Engl J Med 369:840–851

    Article  CAS  PubMed  Google Scholar 

  4. Bagshaw SM, Uchino S, Bellomo R, Morimatsu H, Morgera S, Schetz M, Tan I, Bouman C, Macedo E, Gibney N, Tolwani A, Oudemans-van Straaten HM, Ronco C, Kellum JA (2007) Septic acute kidney injury in critically ill patients: clinical characteristics and outcomes. Clin J Am Soc Nephrol 2:431–439

    Article  PubMed  Google Scholar 

  5. Binkley S, Fishman NO, LaRosa LA, Marr AM, Nachamkin I, Wordell D, Bilker WB, Lautenbach E (2006) Comparison of unit-specific and hospital-wide antibiograms: potential implications for selection of empirical antimicrobial therapy. Infect Control Hosp Epidemiol 27:682–687

    Article  PubMed  Google Scholar 

  6. Blassmann U, Roehr AC, Frey OR, Koeberer A, Briegel J, Huge V, Vetter-Kerkhoff C (2016) Decreased linezolid serum concentrations in three critically ill patients: clinical case studies of a potential drug interaction between linezolid and rifampicin. Pharmacology 98:51–55

    Article  CAS  PubMed  Google Scholar 

  7. Bloos F, Thomas-Ruddel D, Ruddel H, Engel C, Schwarzkopf D, Marshall JC, Harbarth S, Simon P, Riessen R, Keh D, Dey K, Weiss M, Toussaint S, Schadler D, Weyland A, Ragaller M, Schwarzkopf K, Eiche J, Kuhnle G, Hoyer H, Hartog C, Kaisers U, Reinhart K (2014) Impact of compliance with infection management guidelines on outcome in patients with severe sepsis: a prospective observational multi-center study. Crit Care 18:R42

    Article  PubMed  PubMed Central  Google Scholar 

  8. Bodmann KF, Grabein B (2010) Empfehlungen zur kalkulierten parenteralen Initialtherapie bakterieller Erkrankungen bei Erwachsenen Update 2010. Chemother J 19:179–255

    Google Scholar 

  9. Boselli E, Breilh D, Rimmele T, Guillaume C, Xuereb F, Saux MC, Bouvet L, Chassard D, Allaouchiche B (2008) Alveolar concentrations of piperacillin/tazobactam administered in continuous infusion to patients with ventilator-associated pneumonia. Crit Care Med 36:1500–1506

    Article  CAS  PubMed  Google Scholar 

  10. Boucher HW, Talbot GH, Bradley JS, Edwards JE, Gilbert D, Rice LB, Scheld M, Spellberg B, Bartlett J (2009) Bad bugs, no drugs: no ESKAPE! An update from the Infectious Diseases Society of America. Clin Infect Dis 48:1–12

    Article  PubMed  Google Scholar 

  11. Brinkmann A, Röhr A, Köberer A, Fuchs T, Preisenberger J, Helbig S, König C, Frey OR (2015) Therapeutisches Drug Monitoring und individualisierte Dosierung von Beta-Laktam-Antibiotika bei Intensivpatienten. In: Eckart J, Forst H, Briegel J (Hrsg) Intensivmedizin. ecomed Medizin, Landsberg am Lech, S 1–18

    Google Scholar 

  12. Burgmann H (2014) Antiinfektive Erstherapie bei Sepsis. Med Klin Intensivmed Notfmed 109:577–582

    Article  CAS  PubMed  Google Scholar 

  13. Carlet J, Collignon P, Goldmann D, Goossens H, Gyssens IC, Harbarth S, Jarlier V, Levy SB, N’Doye B, Pittet D, Richtmann R, Seto WH, van der Meer JW, Voss A (2011) Society’s failure to protect a precious resource: antibiotics. Lancet 378:369–371

    Article  PubMed  Google Scholar 

  14. Carlier M, Carrette S, Roberts JA, Stove V, Verstraete A, Hoste E, Depuydt P, Decruyenaere J, Lipman J, Wallis SC, De Waele JJ (2013) Meropenem and piperacillin/tazobactam prescribing in critically ill patients: Does augmented renal clearance affect pharmacokinetic/pharmacodynamic target attainment when extended infusions are used? Crit Care 17:R84

    Article  PubMed  PubMed Central  Google Scholar 

  15. Chant C, Leung A, Friedrich JO (2013) Optimal dosing of antibiotics in critically ill patients by using continuous/extended infusions: a systematic review and meta-analysis. Crit Care 17:R279

    Article  PubMed  PubMed Central  Google Scholar 

  16. Choi G, Gomersall CD, Tian Q, Joynt GM, Freebairn R, Lipman J (2009) Principles of antibacterial dosing in continuous renal replacement therapy. Crit Care Med 37:2268–2282

    Article  CAS  PubMed  Google Scholar 

  17. Craig WA (1998) Pharmacokinetic/pharmacodynamic parameters: rationale for antibacterial dosing of mice and men. Clin Infect Dis 26:1–10

    Article  CAS  PubMed  Google Scholar 

  18. Di Giantomasso D, May CN, Bellomo R (2003) Vital organ blood flow during hyperdynamic sepsis. Chest 124:1053–1059

    Article  PubMed  Google Scholar 

  19. Drusano GL (2004) Antimicrobial pharmacodynamics: critical interactions of „bug and drug“. Nat Rev Microbiol 2:289–300

    Article  CAS  PubMed  Google Scholar 

  20. Drusano GL, Lodise TP, Melnick D, Liu W, Oliver A, Mena A, VanScoy B, Louie A (2011) Meropenem penetration into epithelial lining fluid in mice and humans and delineation of exposure targets. Antimicrob Agents Chemother 55:3406–3412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Dulhunty JM, Roberts JA, Davis JS, Webb SA, Bellomo R, Gomersall C, Shirwadkar C, Eastwood GM, Myburgh J, Paterson DL, Lipman J (2013) Continuous infusion of beta-lactam antibiotics in severe sepsis: a multicenter double-blind, randomized controlled trial. Clin Infect Dis 56:236–244

    Article  CAS  PubMed  Google Scholar 

  22. Dulhunty JM, Roberts JA, Davis JS, Webb SA, Bellomo R, Gomersall C, Shirwadkar C, Eastwood GM, Myburgh J, Paterson DL, Starr T, Paul SK, Lipman J (2015) A Multicenter randomized trial of continuous versus intermittent beta-lactam infusion in severe sepsis. Am J Respir Crit Care Med 192:1298–1305

    Article  CAS  PubMed  Google Scholar 

  23. Falagas ME, Tansarli GS, Ikawa K, Vardakas KZ (2013) Clinical outcomes with extended or continuous versus short-term intravenous infusion of carbapenems and piperacillin/tazobactam: a systematic review and meta-analysis. Clin Infect Dis 56:272–282

    Article  CAS  PubMed  Google Scholar 

  24. Finfer S, Bellomo R, Boyce N, French J, Myburgh J, Norton R (2004) A comparison of albumin and saline for fluid resuscitation in the intensive care unit. N Engl J Med 350:2247–2256

    Article  CAS  PubMed  Google Scholar 

  25. Frey OR, Bias M, Köberer A (2010) Therapeutisches Drug Monitoring von Meronem® in der klinischen Praxis. Krankenhauspharmazie 31:525–531

    Google Scholar 

  26. Frey OR, Köberer A, Röhr AC, Fuchs T, Brinkmann A (2013) Therapeutisches Drug Monitoring (TDM) von Antiinfektiva bei kritisch Kranken. Intensiv-News 17:16–18

    Google Scholar 

  27. Frey OR, Helbig S, Röhr AC, Preisenberger J, Köberer A, Fuchs T, König C, Brinkmann A (2015) Fragen und Antworten zur individuellen Dosierung von ß‑Lactam-Antibiotika bei kritisch Kranken. Intensiv-News 19:30–33

    Google Scholar 

  28. Fuster-Lluch O, Geronimo-Pardo M, Peyro-Garcia R, Lizan-Garcia M (2008) Glomerular hyperfiltration and albuminuria in critically ill patients. Anaesth Intensive Care 36:674–680

    CAS  PubMed  Google Scholar 

  29. Goncalves-Pereira J, Povoa P (2011) Antibiotics in critically ill patients: a systematic review of the pharmacokinetics of beta-lactams. Crit Care 15:R206

    Article  PubMed  PubMed Central  Google Scholar 

  30. Gous A, Lipman J, Scribante J, Tshukutsoane S, Hon H, Pinder M, Mathivha R, Verhoef L, Stass H (2005) Fluid shifts have no influence on ciprofloxacin pharmacokinetics in intensive care patients with intra-abdominal sepsis. Int J Antimicrob Agents 26:50–55

    Article  CAS  PubMed  Google Scholar 

  31. Hanrahan TP, Harlow G, Hutchinson J, Dulhunty JM, Lipman J, Whitehouse T, Roberts JA (2014) Vancomycin-associated nephrotoxicity in the critically ill: a retrospective multivariate regression analysis. Crit Care Med 42:2527–2536

    Article  CAS  PubMed  Google Scholar 

  32. Hanrahan TP, Kotapati C, Roberts MJ, Rowland J, Lipman J, Roberts JA, Udy A (2015) Factors associated with vancomycin nephrotoxicity in the critically ill. Anaesth Intensive Care 43:594–599

    CAS  PubMed  Google Scholar 

  33. Hao JJ, Chen H, Zhou JX (2016) Continuous versus intermittent infusion of vancomycin in adult patients: a systematic review and meta-analysis. Int J Antimicrob Agents 47:28–35

    Article  CAS  PubMed  Google Scholar 

  34. Hayashi Y, Lipman J, Udy AA, Ng M, McWhinney B, Ungerer J, Lust K, Roberts JA (2013) beta-Lactam therapeutic drug monitoring in the critically ill: optimising drug exposure in patients with fluctuating renal function and hypoalbuminaemia. Int J Antimicrob Agents 41:162–166

    Article  CAS  PubMed  Google Scholar 

  35. Henrichfreise B, Wiegand I, Luhmer-Becker I, Wiedemann B (2007) Development of resistance in wild-type and hypermutable Pseudomonas aeruginosa strains exposed to clinical pharmacokinetic profiles of meropenem and ceftazidime simulated in vitro. Antimicrob Agents Chemother 51:3642–3649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Jamal JA, Economou CJ, Lipman J, Roberts JA (2012) Improving antibiotic dosing in special situations in the ICU: burns, renal replacement therapy and extracorporeal membrane oxygenation. Curr Opin Crit Care 18:460–471

    Article  PubMed  Google Scholar 

  37. Jamal JA, Udy AA, Lipman J, Roberts JA (2014) The impact of variation in renal replacement therapy settings on piperacillin, meropenem, and vancomycin drug clearance in the critically ill: an analysis of published literature and dosing regimens. Crit Care Med 42:1640–1650

    Article  PubMed  Google Scholar 

  38. Joukhadar C, Frossard M, Mayer BX, Brunner M, Klein N, Siostrzonek P, Eichler HG, Muller M (2001) Impaired target site penetration of beta-lactams may account for therapeutic failure in patients with septic shock. Crit Care Med 29:385–391

    Article  CAS  PubMed  Google Scholar 

  39. Kollef MH, Sherman G, Ward S, Fraser VJ (1999) Inadequate antimicrobial treatment of infections: a risk factor for hospital mortality among critically ill patients. Chest 115:462–474

    Article  CAS  PubMed  Google Scholar 

  40. Kontou P, Chatzika K, Pitsiou G, Stanopoulos I, Argyropoulou-Pataka P, Kioumis I (2011) Pharmacokinetics of ciprofloxacin and its penetration into bronchial secretions of mechanically ventilated patients with chronic obstructive pulmonary disease. Antimicrob Agents Chemother 55:4149–4153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kumar A, Kethireddy S (2013) Emerging concepts in optimizing antimicrobial therapy of septic shock: speed is life but a hammer helps too. Crit Care 17:104

    Article  PubMed  PubMed Central  Google Scholar 

  42. Kumar A, Roberts D, Wood KE, Light B, Parrillo JE, Sharma S, Suppes R, Feinstein D, Zanotti S, Taiberg L, Gurka D, Kumar A, Cheang M (2006) Duration of hypotension before initiation of effective antimicrobial therapy is the critical determinant of survival in human septic shock. Crit Care Med 34:1589–1596

    Article  PubMed  Google Scholar 

  43. Kumar A, Ellis P, Arabi Y, Roberts D, Light B, Parrillo JE, Dodek P, Wood G, Kumar A, Simon D, Peters C, Ahsan M, Chateau D (2009) Initiation of inappropriate antimicrobial therapy results in a fivefold reduction of survival in human septic shock. Chest 136:1237–1248

    Article  PubMed  Google Scholar 

  44. Lagler H, Zeitlinger M (2014) Erreicht die Behandlung den Zielort? Gewebepenetration von Antibiotika. Med Klin Intensivmed Notfmed 109:175–181

    Article  CAS  PubMed  Google Scholar 

  45. Lodise TP, Butterfield J (2011) Use of pharmacodynamic principles to inform beta-lactam dosing: „S“ does not always mean success. J Hosp Med 6(Suppl 1):S16–S23

    Article  PubMed  Google Scholar 

  46. Lodise TP Jr., Lomaestro B, Drusano GL (2007) Piperacillin-tazobactam for Pseudomonas aeruginosa infection: clinical implications of an extended-infusion dosing strategy. Clin Infect Dis 44:357–363

    Article  CAS  PubMed  Google Scholar 

  47. Lodise TP, Sorgel F, Melnick D, Mason B, Kinzig M, Drusano GL (2011) Penetration of meropenem into epithelial lining fluid of patients with ventilator-associated pneumonia. Antimicrob Agents Chemother 55:1606–1610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Lu Q, Luo R, Bodin L, Yang J, Zahr N, Aubry A, Golmard JL, Rouby JJ (2012) Efficacy of high-dose nebulized colistin in ventilator-associated pneumonia caused by multidrug-resistant Pseudomonas aeruginosa and Acinetobacter baumannii. Anesthesiology 117:1335–1347

    Article  CAS  PubMed  Google Scholar 

  49. MacArthur RD, Miller M, Albertson T, Panacek E, Johnson D, Teoh L, Barchuk W (2004) Adequacy of early empiric antibiotic treatment and survival in severe sepsis: experience from the MONARCS trial. Clin Infect Dis 38:284–288

    Article  PubMed  Google Scholar 

  50. Marik PE (1993) Aminoglycoside volume of distribution and illness severity in critically ill septic patients. Anaesth Intensive Care 21:172–173

    CAS  PubMed  Google Scholar 

  51. Nosseir NS, Michels G, Pfister R, Adam R, Wiesen MH, Muller C (2014) Therapeutisches Drug Monitoring (TDM) von Antiinfektiva in der Intensivmedizin. Dtsch Med Wochenschr 139:1889–1894

    Article  CAS  PubMed  Google Scholar 

  52. Patel BM, Paratz J, See NC, Muller MJ, Rudd M, Paterson D, Briscoe SE, Ungerer J, McWhinney BC, Lipman J, Roberts JA (2012) Therapeutic drug monitoring of beta-lactam antibiotics in burns patients-a one-year prospective study. Ther Drug Monit 34:160–164

    Article  CAS  PubMed  Google Scholar 

  53. Rhomberg PR, Fritsche TR, Sader HS, Jones RN (2006) Antimicrobial susceptibility pattern comparisons among intensive care unit and general ward Gram-negative isolates from the Meropenem Yearly Susceptibility Test Information Collection Program (USA). Diagn Microbiol Infect Dis 56:57–62

    Article  CAS  PubMed  Google Scholar 

  54. Roberts DM, Roberts JA, Roberts MS, Liu X, Nair P, Cole L, Lipman J, Bellomo R (2012) Variability of antibiotic concentrations in critically ill patients receiving continuous renal replacement therapy: a multicentre pharmacokinetic study. Crit Care Med 40:1523–1528

    Article  CAS  PubMed  Google Scholar 

  55. Roberts JA, Kirkpatrick CM, Roberts MS, Robertson TA, Dalley AJ, Lipman J (2009) Meropenem dosing in critically ill patients with sepsis and without renal dysfunction: intermittent bolus versus continuous administration? Monte Carlo dosing simulations and subcutaneous tissue distribution. J Antimicrob Chemother 64:142–150

    Article  CAS  PubMed  Google Scholar 

  56. Roberts JA, Roberts MS, Robertson TA, Dalley AJ, Lipman J (2009) Piperacillin penetration into tissue of critically ill patients with sepsis – bolus versus continuous administration? Crit Care Med 37:926–933

    Article  PubMed  Google Scholar 

  57. Roberts JA, Webb S, Paterson D, Ho KM, Lipman J (2009) A systematic review on clinical benefits of continuous administration of beta-lactam antibiotics. Crit Care Med 37:2071–2078

    Article  CAS  PubMed  Google Scholar 

  58. Roberts JA, Joynt GM, Choi GY, Gomersall CD, Lipman J (2012) How to optimise antimicrobial prescriptions in the intensive care unit: principles of individualised dosing using pharmacokinetics and pharmacodynamics. Int J Antimicrob Agents 39:187–192

    Article  CAS  PubMed  Google Scholar 

  59. Roberts JA, Norris R, Paterson DL, Martin JH (2012) Therapeutic drug monitoring of antimicrobials. Br J Clin Pharmacol 73:27–36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Roberts JA, Paul SK, Akova M, Bassetti M, De Waele JJ, Dimopoulos G, Kaukonen KM, Koulenti D, Martin C, Montravers P, Rello J, Rhodes A, Starr T, Wallis SC, Lipman J (2014) DALI: Defining Antibiotic Levels in Intensive care unit patients: Are current beta-lactam antibiotic doses sufficient for critically ill patients? Clin Infect Dis 58:1072–1083

    Article  CAS  PubMed  Google Scholar 

  61. Roberts JA, Abdul-Aziz MH, Lipman J, Mouton JW, Vinks AA, Felton TW, Hope WW, Farkas A, Neely MN, Schentag JJ, Drusano G, Frey OR, Theuretzbacher U, Kuti JL (2014) Individualised antibiotic dosing for patients who are critically ill: challenges and potential solutions. Lancet Infect Dis 14:498–509

    Article  PubMed  PubMed Central  Google Scholar 

  62. Roberts JA, Taccone FS, Lipman J (2015) Understanding PK/PD. Intensive Care Med. doi:10.1007/s00134-015-4032-6

    PubMed Central  Google Scholar 

  63. Roberts JA, bdul-Aziz MH, Davis JS, Dulhunty JM, Cotta MO, Myburgh J, Bellomo R, Lipman J (2016) Continuous versus intermittent beta-lactam infusion in severe sepsis: a meta-analysis of individual patient data from randomized trials. Am J Respir Crit Care Med. doi:10.1164/rccm.201601-0024oc

    PubMed Central  Google Scholar 

  64. Rodvold KA, George JM, Yoo L (2011) Penetration of anti-infective agents into pulmonary epithelial lining fluid: focus on antibacterial agents. Clin Pharmacokinet 50:637–664

    Article  CAS  PubMed  Google Scholar 

  65. Roehr AC, Frey OR, Koeberer A, Fuchs T, Roberts JA, Brinkmann A (2015) Anti-infective drugs during continuous hemodialysis – using the bench to learn what to do at the bedside. Int J Artif Organs 38:17–22

    Article  CAS  PubMed  Google Scholar 

  66. Roger C, Muller L, Wallis SC, Louart B, Saissi G, Lipman J, Lefrant JY, Roberts JA (2016) Population pharmacokinetics of linezolid in critically ill patients on renal replacement therapy: comparison of equal doses in continuous venovenous haemofiltration and continuous venovenous haemodiafiltration. J Antimicrob Chemother 71:464–470

    Article  CAS  PubMed  Google Scholar 

  67. Ryan DM (1993) Pharmacokinetics of antibiotics in natural and experimental superficial compartments in animals and humans. J Antimicrob Chemother 31(Suppl D):1–16

    Article  CAS  PubMed  Google Scholar 

  68. Rybak MJ, Lomaestro BM, Rotschafer JC, Moellering RC, Craig WA, Billeter M, Dalovisio JR, Levine DP (2009) Vancomycin therapeutic guidelines: a summary of consensus recommendations from the infectious diseases Society of America, the American Society of Health-System Pharmacists, and the Society of Infectious Diseases Pharmacists. Clin Infect Dis 49:325–327

    Article  PubMed  Google Scholar 

  69. Samtani MN, Flamm R, Kaniga K, Nandy P (2010) Pharmacokinetic-pharmacodynamic-model-guided doripenem dosing in critically ill patients. Antimicrob Agents Chemother 54:2360–2364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Seyler L, Cotton F, Taccone FS, De BD, Macours P, Vincent JL, Jacobs F (2011) Recommended beta-lactam regimens are inadequate in septic patients treated with continuous renal replacement therapy. Crit Care 15:R137

    Article  PubMed  PubMed Central  Google Scholar 

  71. Shiu J, Wang E, Tejani AM, Wasdell M (2013) Continuous versus intermittent infusions of antibiotics for the treatment of severe acute infections. Cochrane Database Syst Rev 3:CD008481

    Google Scholar 

  72. Sime FB, Roberts MS, Peake SL, Lipman J, Roberts JA (2012) Does beta-lactam pharmacokinetic variability in critically ill patients justify therapeutic drug monitoring? A systematic review. Ann Intensive Care 2:1–11

    Article  Google Scholar 

  73. Tam VH, Schilling AN, Neshat S, Poole K, Melnick DA, Coyle EA (2005) Optimization of meropenem minimum concentration/MIC ratio to suppress in vitro resistance of pseudomonas aeruginosa. Antimicrob Agents Chemother 49:4920–4927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Tam VH, Gamez EA, Weston JS, Gerard LN, LaRocco MT, Caeiro JP, Gentry LO, Garey KW (2008) Outcomes of bacteremia due to pseudomonas aeruginosa with reduced susceptibility to piperacillin-tazobactam: implications on the appropriateness of the resistance breakpoint. Clin Infect Dis 46:862–867

    Article  PubMed  Google Scholar 

  75. Teo J, Liew Y, Lee W, Kwa AL (2014) Prolonged infusion versus intermittent boluses of beta-lactam antibiotics for treatment of acute infections: a meta-analysis. Int J Antimicrob Agents 43:403–411

    Article  CAS  PubMed  Google Scholar 

  76. Udy AA, Roberts JA, Lipman J (2011) Implications of augmented renal clearance in critically ill patients. Nat Rev Nephrol 7:539–543

    Article  CAS  PubMed  Google Scholar 

  77. Udy AA, Roberts JA, Shorr AF, Boots RJ, Lipman J (2013) Augmented renal clearance in septic and traumatized patients with normal plasma creatinine concentrations: identifying at-risk patients. Crit Care 17:R35

    Article  PubMed  PubMed Central  Google Scholar 

  78. Ulldemolins M, Roberts JA, Rello J, Paterson DL, Lipman J (2011) The effects of hypoalbuminaemia on optimizing antibacterial dosing in critically ill patients. Clin Pharmacokinet 50:99–110

    Article  CAS  PubMed  Google Scholar 

  79. Valenza G, Seifert H, cker-Burgard S, Laeuffer J, Morrissey I, Mutters R (2012) Comparative Activity of Carbapenem Testing (COMPACT) study in Germany. Int J Antimicrob Agents 39:255–258

    Article  CAS  PubMed  Google Scholar 

  80. van Lent-Evers NA, Mathot RA, Geus WP, van Hout BA, Vinks AA (1999) Impact of goal-oriented and model-based clinical pharmacokinetic dosing of aminoglycosides on clinical outcome: a cost-effectiveness analysis. Ther Drug Monit 21:63–73

    Article  PubMed  Google Scholar 

  81. Vazquez-Guillamet C, Scolari M, Zilberberg MD, Shorr AF, Micek ST, Kollef M (2014) Using the number needed to treat to assess appropriate antimicrobial therapy as a determinant of outcome in severe sepsis and septic shock. Crit Care Med 42:2342–2349

    Article  CAS  PubMed  Google Scholar 

  82. Vincent JL, Rello J, Marshall J, Silva E, Anzueto A, Martin CD, Moreno R, Lipman J, Gomersall C, Sakr Y, Reinhart K (2009) International study of the prevalence and outcomes of infection in intensive care units. JAMA 302:2323–2329

    Article  CAS  PubMed  Google Scholar 

  83. Wong G, Briscoe S, Adnan S, McWhinney B, Ungerer J, Lipman J, Roberts JA (2013) Protein binding of beta-lactam antibiotics in critically ill patients: Can we successfully predict unbound concentrations? Antimicrob Agents Chemother 57:6165–6170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Wong G, Brinkmann A, Benefield RJ, Carlier M, De Waele JJ, El HN, Frey O, Harbarth S, Huttner A, McWhinney B, Misset B, Pea F, Preisenberger J, Roberts MS, Robertson TA, Roehr A, Sime FB, Taccone FS, Ungerer JP, Lipman J, Roberts JA (2014) An international, multicentre survey of beta-lactam antibiotic therapeutic drug monitoring practice in intensive care units. J Antimicrob Chemother 69:1416–1423

    Article  CAS  PubMed  Google Scholar 

  85. Wong G, Sime FB, Lipman J, Roberts JA (2014) How do we use therapeutic drug monitoring to improve outcomes from severe infections in critically ill patients? BMC Infect Dis 14:288

    Article  PubMed  PubMed Central  Google Scholar 

  86. Yang H, Zhang C, Zhou Q, Wang Y, Chen L (2015) Clinical outcomes with alternative dosing strategies for piperacillin/tazobactam: a systematic review and meta-analysis. PLOS ONE 10:e0116769

    Article  PubMed  PubMed Central  Google Scholar 

  87. Brinkmann A et al et al (2015) Prolongierte Antibiotikagabe und Therapeutisches Drug Monitoring bei schwerer Sepsis und septischem Schock. In: Jorch G (Hrsg) DIVI Jahrbuch 2014/2015. Fortbildung und Wissenschaft in der interdisziplinären Intensivmedizin und Notfallmedizin. Medizinisch Wissenschaftliche Verlagsgesellschaft, Berlin, S 11–20

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Brinkmann MBA.

Ethics declarations

Interessenkonflikt

A. Brinkmann erhielt: Forschungsförderung von Fresenius Medical Care; Reisekostenunterstützung von Grünenthal, Pfizer, Niedersächsisches Landesgesundheitsamt, DAAF, PEG, BDA, DGAI, DIVI; Honorare für Vorträge von Grünenthal GmbH, Pfizer Pharma GmbH, Niedersächsisches Landesgesundheitsamt. J. Preisenberger gibt an, dass die Preisenberger UG für das CADDy-Projekt eine finanzielle Unterstützung von Fresenius Kabi Deutschland erhielt. A.C. Röhr, A. Köberer, T. Fuchs, W.A. Krüger und O.R. Frey geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Additional information

Redaktion

M. Buerke, Siegen

Dieser Beitrag erschien in einer früheren Version in: J. Eckart, H. Forst, J. Briegel (Hrsg.) (2015) Intensivmedizin [11]. Der vorliegende Artikel wurde mit Genehmigung des ecomed-Verlages für die Publikation in dieser Zeitschrift aktualisiert und komplett überarbeitet.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brinkmann, A., Röhr, A.C., Köberer, A. et al. Therapeutisches Drug Monitoring und individualisierte Dosierung von Antibiotika bei der Sepsis. Med Klin Intensivmed Notfmed 113, 82–93 (2018). https://doi.org/10.1007/s00063-016-0213-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00063-016-0213-5

Schlüsselwörter

Keywords

Navigation