Skip to main content
Log in

Channel Estimation for Finite Scatterers Massive Multi-User MIMO System

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

In finite scattering propagation environment, when the number of scatterers is very small compared to the number of base station antennas and users in the cell and if the same scatterers are shared by all users, then the correlation among the users increases. Hence, the high-dimensional multi-user MIMO system is likely to have low-rank channel. To estimate the channel matrix, weighted nuclear norm minimization method is proposed in this paper. Iterative weighted singular value thresholding algorithm is used to solve the optimization problem. To recover the low-rank channel, a partial random Fourier matrix (PRFM) satisfying the restricted isometric property is adapted as the training matrix. The PRFM forces the iterative algorithm to converge in one iteration which reduces the huge computational complexity of the proposed channel estimation method. The mean square error and achievable sum rate are the criteria used to measure the performance of the proposed method. The results show that the proposed method outperforms the least square estimation method and the nuclear norm minimization method for various finite scatterers in different SNR levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. R.G. Baraniuk, Compressive sensing. IEEE Signal Process. Mag. 24(4), 1–10 (2007)

  2. C.R. Berger, Z. Wang, J. Huang, S. Zhou, Application of compressive sensing to sparse channel estimation. IEEE Commun. Mag. 48(11), 164–174 (2010)

    Article  Google Scholar 

  3. E. Candes, C.A. Sing-Long, J.D. Trzasko, Unbiased risk estimates for singular value thresholding and spectral estimators. IEEE Trans. Signal Process. 61(19), 4643–4657 (2013)

    Article  MathSciNet  Google Scholar 

  4. E.J. Candes, T. Tao, Near-optimal signal recovery from random projections: universal encoding strategies? IEEE Trans. Inf. Theory 52(12), 5406–5425 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. T.T. Do, N.H.N. Lu Gan, T.D. Tran, Fast and efficient compressive sensing using structurally random matrices. IEEE Trans. Signal Process. 60(1), 139–154 (2012)

    Article  MathSciNet  Google Scholar 

  6. S. Gu, Z. Lei, Z. Wangmeng, F. Xiangchu, Weighted nuclear norm minimization with application to image denoising, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2014), pp. 2862–2869

  7. J. Hoydis, T.B. Stephan, D. Merouane, Massive MIMO in the UL/DL of cellular networks: How many antennas do we need? IEEE J. Sel. Areas Commun. 31(2), 160–171 (2013)

    Article  Google Scholar 

  8. P. Jain, R. Meka, I.S. Dhillon, Guaranteed rank minimization via singular value projection, in Advances in Neural Information Processing Systems (2010), pp. 937–945

  9. J. Josse, S. Sardy, Adaptive shrinkage of singular values. Stat. Comput. 26(3), 715–724 (2015)

  10. Y.-F. Li, Y.-J. Zhang, Z.-H. Huang, A reweighted nuclear norm minimization algorithm for low rank matrix recovery. J. Comput. Appl. Math. 263, 338–350 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. L. Lu, G.Y. Li, A.L. Swindlehurst, A. Ashikhmin, R. Zhang, An overview of massive MIMO: benefits and challenges. IEEE J. Sel. Top. Signal Process. 8(5), 742–758 (2014)

    Article  Google Scholar 

  12. T.L. Marzetta, How much training is required for multiuser MIMO? in Signals, Systems and Computers Conference (ACSSC) (IEEE, 2006), pp. 359–363

  13. T.L. Marzetta, Noncooperative cellular wireless with unlimited numbers of base station antennas. IEEE Trans. Wirel. Commun. 9(11), 3590–3600 (2010)

    Article  Google Scholar 

  14. H.Q. Ngo, E.G. Larsson, T.L. Marzetta, Energy and spectral efficiency of very large multiuser MIMO systems. IEEE Trans. Commun. 61(4), 1436–1449 (2013)

    Article  Google Scholar 

  15. H.Q. Ngo, E.G. Larsson, EVD-based channel estimations for multicell multiuser MIMO with very large antenna arrays, in IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (2012), pp. 3249–3252

  16. S.L.H. Nguyen, A. Ghrayeb, Precoding for multicell massive MIMO systems with compressive rank-q channel approximation, in IEEE 24th International Symposium on Personal Indoor and Mobile Radio Communications (PIMRC) (2013), pp. 1227–1232

  17. S.L.H. Nguyen, A. Ghrayeb, Compressive sensing-based channel estimation for massive multiuser MIMO systems, in Wireless Communications and Networking Conference (WCNC) (IEEE, 2013), pp. 2890–2895

  18. T. Nikazad, The Use of Landweber Algorithm in Image Reconstruction (2007)

  19. B. Recht, M. Fazel, P.A. Parrilo, Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization. SIAM Rev. 52(3), 471–501 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. M. Rudelson, R. Vershynin, Non-asymptotic Theory of Random Matrices: Extreme Singular Values. arXiv preprint arXiv:1003.2990 (2010)

  21. N. Shariati, E. Bjornson, M. Bengtsson, M. Debbah, Low complexity polynomial channel estimation in large scale MIMO with arbitrary statistics. IEEE J. Sel. Top. Signal Process. 8(5), 815–830 (2014)

    Article  Google Scholar 

  22. R. Vershynin, Spectral norm of products of random and deterministic matrices. Probab. Theory Rel. Fields 150(3–4), 471–509 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  23. K. Zheng, S. Ou, X. Yin, Massive MIMO channel models: a survey. Int. J. Antennas Propag. 2014, 848071 (2014). doi:10.1155/2014/848071

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Selvaganesan.

Appendix: Convergence Analysis

Appendix: Convergence Analysis

The convergence of the proposed iterative algorithm is analysed by assuming the regularizer factor \(\lambda =0\). Then the term \(||\mathbf y -\varvec{\varPsi } \mathbf h ||_2^2\) in (6) can be solved iteratively using Landweber iterative method in matrix form as

$$\begin{aligned} \begin{aligned} \mathbf H _{i+1}=\mathbf H _{i} + \beta (\mathbf Y -\mathbf H _{i}\varvec{\varPhi })\varvec{\varPhi }^H \end{aligned} \end{aligned}$$
(17)

which can be rewritten as

$$\begin{aligned} \begin{aligned} \mathbf H _{i+1}=\mathbf H _{i}(\mathbf I -\beta \varvec{\varPhi }\varvec{\varPhi }^H) + \beta \mathbf Y \varvec{\varPhi }^H \end{aligned} \end{aligned}$$
(18)

Since \(\mathbf H _0\) is initialized to be all zero matrix, obtain using the above recursion \(\mathbf H _1\) to be

$$\begin{aligned} \begin{aligned} \mathbf H _{1}=\beta \mathbf H \varvec{\varPhi }^H \end{aligned} \end{aligned}$$
(19)

and

$$\begin{aligned} \begin{aligned} \mathbf H _{2}=\beta \mathbf Y \varvec{\varPhi }^H + (\mathbf I -\beta \varvec{\varPhi }\varvec{\varPhi }^H) \mathbf Y \varvec{\varPhi }^H \end{aligned} \end{aligned}$$
(20)

Rearranging the equation \(\mathbf H _2\) in terms of \(\mathbf H _1\)

$$\begin{aligned} \begin{aligned} \mathbf H _{2}=\mathbf H _{1} + (\mathbf I - \beta \varvec{\varPhi }\varvec{\varPhi }^H) \mathbf Y \varvec{\varPhi }^H \end{aligned} \end{aligned}$$
(21)

Similarly, we obtain \(\mathbf H _3\) as

$$\begin{aligned} \begin{aligned} \mathbf H _{3}=\mathbf H _{2} + (\mathbf I -\beta \varvec{\varPhi }\varvec{\varPhi }^H)^2 \mathbf Y \varvec{\varPhi }^H \end{aligned} \end{aligned}$$
(22)

In general, the iterative equation is written as

$$\begin{aligned} \begin{aligned} \mathbf H _{i}=\sum _{j=0}^{i-1}\beta \mathbf Y \varvec{\varPhi }^H(\mathbf I -\beta \varvec{\varPhi }\varvec{\varPhi }^H)^j \end{aligned} \end{aligned}$$
(23)

Using the expression for the sum of a geometric series, we obtain

$$\begin{aligned} \begin{aligned} \mathbf H _{i}= \beta \mathbf Y \varvec{\varPhi }^H [\mathbf I -(\mathbf I -\beta \varvec{\varPhi }\varvec{\varPhi }^H)]^{-1} [\mathbf I -(\mathbf I -\beta \varvec{\varPhi }\varvec{\varPhi }^H)^i] \end{aligned} \end{aligned}$$
(24)

For a partial DFT matrix \(\varvec{\varPhi }\varvec{\varPhi }^H=\mathbf I \) and if we assume \(\beta \) =1 then (9) converges to \(\mathbf Y \varvec{\varPhi }^H\), i.e. in one iteration.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vanidevi, M., Selvaganesan, N. Channel Estimation for Finite Scatterers Massive Multi-User MIMO System. Circuits Syst Signal Process 36, 3761–3777 (2017). https://doi.org/10.1007/s00034-016-0489-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-016-0489-y

Keywords

Navigation