Skip to main content
Log in

Thermomechanics of damageable materials under diffusion: modelling and analysis

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

We propose a thermodynamically consistent general-purpose model describing diffusion of a solute or a fluid in a solid undergoing possible phase transformations and damage, beside possible visco-inelastic processes. Also heat generation/consumption/transfer is considered. Damage is modelled as rate-independent. The applications include metal-hydrogen systems with metal/hydride phase transformation, poroelastic rocks, structural and ferro/para-magnetic phase transformation, water and heat transport in concrete, and if diffusion is neglected, plasticity with damage and viscoelasticity, etc. For the ensuing system of partial differential equations and inclusions, we prove existence of solutions by a carefully devised semi-implicit approximation scheme of the fractional-step type.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akagi G.: Maximal monotonicity for the sum of two subdifferential operators in L p-spaces. Nonlinear Anal. Theory. Methods Appl. 74, 1664–1671 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  2. Auricchio F., Reali A., Stefanelli U.: A macroscopic 1D model for shape memory alloys including asymmetric behaviors and transformation-dependent elastic properties. Comput. Methods Appl. Mech. Eng. 198, 1631–1637 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bažant Z.P., Cusatis G., Cedolin G.: Temperature effect on concrete creep modeled by microprestress-solidification theory. J. Eng. Mech. 130, 691–699 (2004)

    Article  Google Scholar 

  4. Boccardo L., Gallouët T.: Non-linear elliptic and parabolic equations involving measure data. J. Funct. Anal. 87, 149–169 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bonetti E., Colli P., Laurençot P.: Global existence for a hydrogen storage model with full energy balance. Nonlinear Anal. Theory Methods Appl. 75, 3558–3573 (2012)

    Article  MATH  Google Scholar 

  6. Bonetti E., Fremond M., Lexcellent C.: Hydrogen storage: modeling and analytical results. Appl. Math. Optim. 55, 31–59 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bonetti, E., Heinemann, C., Kraus, C., Segatti, A.: Modeling and analysis of a phase field system for damage and phase separation processes in solids. WIAS Preprint No. 1841, Berlin (2013)

  8. Bonetti E., Schimperna G., Segatti A.: On a doubly nonlinear model for the evolution of damaging in viscoelastic materials. J. Differ. Equ. 218, 91–116 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  9. Cahn J.W., Hilliard J.E.: Free energy of a nonuniform system. I. Interfacial free energy. J. Chem. Phys. 28, 258–267 (1958)

    Article  Google Scholar 

  10. Chiodaroli E.: A dissipative model for hydrogen storage: existence and regularity results. Math. Methods Appl. Sci. 34, 642–669 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  11. Dal Maso G., Francfort G., Toader R.: Quasistatic crack growth in nonlinear elasticity. Arch. Ration. Mech. Anal. 176, 165–225 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  12. Di Leo C.V., Rejovitzky E., Anand L.: A Cahn–Hilliard-type phase-field theory for species diffusion coupled with large elastic deformations: application to phase-separating Li-ion electrode materials. J. Mech. Phys. Solids 70, 1–29 (2014)

    Article  MathSciNet  Google Scholar 

  13. Duda, F.P., Barbosa, J.M., Guimarães, L.J., Souza, A.C.: Modeling of coupled deformation-diffusion-damage in elastic solids. Int. J. Model. Simul. Pet. Ind. 1, 85–91 (2007)

  14. Francfort G., Marigo J.-J.: Revisiting brittle fracture as an energy minimization problem. J. Mech. Phys. Solids 46, 1319–1342 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  15. Frémond M.: Non-smooth Thermomechanics. Springer, Berlin (2002)

    Book  MATH  Google Scholar 

  16. Fried E., Gurtin M.: Coherent solid-state phase transitions with atomic diffusion: a thermomechanical treatment. J. Stat. Phys. 95, 1361–1427 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  17. Fujita A., Fujieda S., Hasegawa Y., Fukamichi K.: Itinerant-electron metamagnetic transition and large magnetocaloric effects in la (Fe x Si1-x )13 compounds and their hydrides. Phys. Rev. B 67, 104416 (2003)

    Article  Google Scholar 

  18. Garcke H.: On a Cahn–Hilliard model for phase separation with elastic misfit. Ann. Inst. H. Poincaré 22, 165–185 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  19. Gawin D., Pesavento F., Schrefler B.: Modelling creep and shrinkage of concrete by means of effective stresses. Mater. Struct. 40, 579–591 (2007)

    Article  Google Scholar 

  20. Grün G.: Degenerate parabolic equations of fourth order and a plasticity model with nonlocal hardening. Zeits. Anal. U. Ihre Anwend. 14, 541–573 (1995)

    Article  MATH  Google Scholar 

  21. Gurtin M.E.: Generalized Ginzburg–Landau and Cahn–Hilliard equations based on a microforce balance. Phys. D 92, 178–192 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  22. Hamiel Y., Lyakhovsky V., Agnon A.: Coupled evolution of damage and porosity in poroelastic media: theory and applications to deformation of porous rocks. Geophys. J. Int. 156, 701–713 (2004)

    Article  Google Scholar 

  23. Hamiel Y., Lyakhovsky V., Agnon A.: Poroelastic damage rheology: dilation, compaction, and failure of rocks. Geochem. Geophys. Geosyst. 6, Q01008 (2005)

    Article  Google Scholar 

  24. Havela L., Miliyanchuk K., Kolomiets A.: f-Element hydrides: structure and magnetism. Int. J. Mater. Res. 100, 1182–1186 (2009)

    Article  Google Scholar 

  25. Heinemann C., Kraus C.: A degenerating Cahn–Hilliard system coupled with complete damage processes. Math. Bohem. 139, 315–331 (2014)

    MATH  MathSciNet  Google Scholar 

  26. Jones, R.A.L.: Soft Condense Matter. Oxford University Press, Oxford (2002)

  27. Kolomiets A.V., Havela L., Yartys V.A., Andreev A.V.: Hydrogenation and its effect on crystal structure and magnetism in RENiAl intermetallic compounds. J. Phys. Stud. 3, 55–59 (1999)

    Google Scholar 

  28. Kolwicz-Chodak L., Tarnawski Z., Figiel H., Budziak A., Dawid T., Havela L., Kolomiets A., Kim-Ngan N.-T.: Specific heat anomalies in RMn2(H, D) x hydrides. J. Alloy Compd. 404, 51–54 (2005)

    Article  Google Scholar 

  29. Krejčí P., Stefanelli U.: Existence and nonexistence for the full thermomechanical Souza–Auricchio model of shape memory wires. Math. Mech. Solids 16, 349–365 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  30. Kruis J., Koudelka T., Krejčí T.: Multi-physics analyses of selected civil engineering concrete structures. Commun. Comput. Phys. 12, 885–918 (2012)

    Google Scholar 

  31. Latroche M.: Structural and thermodynamic properties of metallic hydrides used for energy storage. J. Phys. Chem. Solids 65, 517–522 (2004)

    Article  Google Scholar 

  32. Lazzaroni, G., Rossi, R., Thomas, M., Toader, R.: Rate-independent damage in thermo-viscoelastic materials with inertia. WIAS Preprint No. 2025, Berlin (2014)

  33. Lyakhovsky V., Hamiel Y.: Damage evolution and fluid flow in poroelastic rock. Izv. Phys. Solid Earth 43, 13–23 (2007)

    Article  Google Scholar 

  34. Mainik A., Mielke A.: Existence results for energetic models for rate-independent systems. Calc. Var. Partial Differ. Equ. 22, 73–99 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  35. Mielke A., Roubíček T., Stefanelli U.: Γ-limits and relaxations for rate-independent evolutionary problems. Calc. Var. Partial Differ. Equ. 31, 387–416 (2008)

    Article  MATH  Google Scholar 

  36. Mielke A., Roubíček T., Zeman J.: Complete damage in elastic and viscoelastic media and its energetics. Comput. Methods Appl. Mech. Eng. 199, 1242–1253 (2010)

    Article  MATH  Google Scholar 

  37. Mielke A., Theil F.: On rate-independent hysteresis models. Nonlinear Differ. Equ. Appl. 11, 151–189 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  38. Podio Guidugli P., Roubíček T., Tomassetti G.: A thermodynamically-consistent theory of the ferro/paramagnetic transition. Arch. Ration. Mech. Anal. 198, 1057–1094 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  39. Podio-Guidugli P., Tomassetti G.: On the evolution of domain walls in hard ferromagnets. SIAM J. Appl. Math. 64, 1887–1906 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  40. Podio-Guidugli P., Tomassetti G.: Magnetization switching with nonstandard dissipation. IEEE Trans. Magn. 42, 3652–3656 (2006)

    Article  Google Scholar 

  41. Podio-Guidugli P., Vianello M.: Hypertractions and hyperstresses convey the same mechanical information. Contin. Mech. Thermodyn. 22, 163–176 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  42. Rocca, E., Rossi, R.: “Entropic” solutions to a thermodynamically consistent PDE system for phase transitions and damage. SIAM J. Math. Anal. 47, 2519–2586 (2015)

  43. Rocca E., Rossi R.: A degenerating PDE system for phase transitions and damage. Math. Models Methods Appl. Sci. 24, 1265–1341 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  44. Roubíček T.: The Stefan problem in heterogeneous media. Ann. Inst. Henri Poincaré 6, 481–501 (1989)

    MATH  Google Scholar 

  45. Roubíček T.: Thermodynamics of rate independent processes in viscous solids at small strains. SIAM J. Math. Anal. 42, 256–297 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  46. Roubíček T.: Nonlinear Partial Differential Equations with Applications, 2nd edn. Birkhäuser, Basel (2013)

    Book  Google Scholar 

  47. Roubíček T.: Nonlinearly coupled thermo-visco-elasticity. Nonlinear Differ. Equ. Appl. 20, 1243–1275 (2013)

    Article  MATH  Google Scholar 

  48. Roubíček T., Stefanelli U.: Magnetic shape-memory alloys: thermomechanical modeling and analysis. Contin. Mech. Thermodyn. 26, 783–810 (2014)

    Article  MathSciNet  Google Scholar 

  49. Roubíček T., Tomassetti G.: Ferromagnets with eddy currents and pinning effects: their thermodynamics and analysis. Math. Models Methods Appl. Sci. 21, 29–55 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  50. Roubíček T., Tomassetti G.: Phase transformations in electrically conductive ferromagnetic shape-memory alloys, their thermodynamics and analysis. Arch. Ration. Mech. Anal. 210, 1–43 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  51. Roubíček T., Tomassetti G.: Thermodynamics of shape-memory alloys under electric current. Z. Angew. Math. Phys. 61, 1–20 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  52. Roubíček T., Tomassetti G.: Thermomechanics of hydrogen storage in metallic hydrides: modeling and analysis. Discrete Contin. Dyn. Syst. B 14, 2313–2333 (2014)

    Google Scholar 

  53. Roubíček T., Tomassetti G., Zanini C.: The Gilbert equation with dry-friction-type damping. J. Math. Anal. Appl. 355, 453–468 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  54. Thomas, M.: Rate-independent damage processes in nonlinearly elastic materials. PhD thesis, Institut für Mathematik, Humboldt-Universität zu Berlin (2010)

  55. Thomas M., Mielke A.: Damage of nonlinearly elastic materials at small strain—existence and regularity results. Z. Angew. Math. Mech. 90, 88–112 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  56. Ubachs R., Schreurs P., Geers M.: A nonlocal diffuse interface model for microstructure evolution of tin–lead solder. J. Mech. Phys. Solids 52, 1763–1792 (2004)

    Article  MATH  Google Scholar 

  57. Visintin A.: Strong convergence results related to strict convexity. Commun. Partial Differ. Equ. 9, 439–466 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  58. Visintin A.: Models of Phase Transitions. Birkhäuser, Boston (1996)

    Book  MATH  Google Scholar 

  59. Wang H.: Theory of Linear Poroelasticity with Applications to Geomechanics and Hydrogeology. Princeton University Press, Princeton (2000)

    Google Scholar 

  60. Yan Q., Toghiani H., Lee Y.-W., Liang K., Causey H.: Effect of sub-freezing temperatures on a PEM fuel cell performance, startup and fuel cell components. J. Power Sources 160, 1242–1250 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomáš Roubíček.

Additional information

This research has been supported by GA ČR through the projects 201/10/0357 “Modern mathematical and computational models for inelastic processes in solids”, 13-18652S “Computational modeling of damage and transport processes in quasi-brittle materials”, 14-15264S “Experimentally justified multiscale modelling of shape memory alloys”, by the CENTEM Project No. CZ.1.05/21.00/03.0088 (cofounded from ERDF within the OP RDI programme, MŠMT ČR) at New Technologies Research Centre (Univ. of West Bohemia, Plzeň), and by INdAM-GNFM through projects “Mathematical Modeling of Morphing Processes” and “Mathematical Modeling of Shape Changes in Soft Tissues”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roubíček, T., Tomassetti, G. Thermomechanics of damageable materials under diffusion: modelling and analysis. Z. Angew. Math. Phys. 66, 3535–3572 (2015). https://doi.org/10.1007/s00033-015-0566-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00033-015-0566-2

Mathematics Subject Classification

Keywords

Navigation