Skip to main content

Advertisement

Log in

Investigation on a full coupling between damage and other thermomechanical behaviours in the standard thermodynamic framework including environmental effects

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

In the present paper, constitutive equations accounting for coupled damage-thermo-elasto-(visco)plastic and diffusion at small deformation are proposed in the standard thermodynamics of irreversible processes framework. One main objective is to include the diffusion phenomenon in the models with ductile damage. The model is developed in the framework of thermodynamics of irreversible processes with a set of internal state variables. For illustration, we consider hydrogen diffusion in both normal interstitial lattice sites and trapping sites. The damage modelling of microvoids or microcracks is introduced by the use of Continuum Damage Mechanics framework leading to the definition of effective state variables on fictive undamaged configuration based on the total energy equivalence assumption. Consequently, the full coupling concerns not only the elastic and inelastic behaviour with hardening (isotopic and kinematic), but also the thermal and diffusion phenomena. The concept of the total energy equivalence is thus extended to define effective temperature, entropy, and effective state variables associated with diffusion. It enables to obtain different couplings between thermal phenomena, diffusion phenomena, and the mechanical behaviour, especially isotropic ductile damage. Such a full coupled model is then applied to a representative volume element subject to some typical simple loading paths for illustration and test of such couplings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. McClintock, F.A.: Ductile rupture by the growth of holes. J. Appl. Mech 35(2), 363–371 (1969)

    Google Scholar 

  2. Rice, J.R., Tracey, D.M.: On the ductile enlargement of voids in triaxial stress fields. J. Mech. Phys. Solids 17(3), 201–217 (1969)

    Google Scholar 

  3. Rousselier, G.: Finite Deformation Constitutive Relations Including Ductile Fracture Damage in Three Dimensional Constitutive Relation and Ductile Fracture, p. 331. Holland Publishing Co., London (1980)

    Google Scholar 

  4. Gurson, A.L.: Continuum theory of ductile rupture by void nucleation and growth: part I: yield criteria and flow rules for porous ductile media. J. Eng. Mater. Technol. 99(1), 2–15 (1977)

    Google Scholar 

  5. Tvergaard, V., Needleman, A.: Analysis of the cup-cone fracture in a round tensile bar. Acta Metall. 32, 157–169 (1984)

    Google Scholar 

  6. Rousselier, G.: Ductile fracture models and their potential in local approach of fracture. Nucl. Eng. Des. 105, 97–111 (1987)

    Google Scholar 

  7. Tvergaard, V.: Material failure by void growth to coalescence. Adv. Appl. Mech. 27, 83–151 (1989)

    MATH  Google Scholar 

  8. Besson, J., Steglich, D., Brocks, W.: modelling of crack growth in round bars and plane strain specimens. Int. J. Solids Struct. 38(46–47), 8259–8284 (2001)

    MATH  Google Scholar 

  9. Chaboche, J.L.: Le concept de contrainte effective appliqué à l’élasticité et à la viscoplasticité en présence d’un endommagement anisotrope. In: Boehler, J.P. (ed.) Mechanical Behavior of Anisotropic Solids/Comportment Méchanique des Solides Anisotropes, pp. 737–760. Springer, Dordrecht (1982)

    Google Scholar 

  10. Lemaitre, J., Chaboche, J.L.: Mécanique des matériaux solides. Dunod, Paris (1985)

    Google Scholar 

  11. Lemaitre, J.: A continuous damage mechanics model for ductile fracture. J. Eng. Mater. Technol. 107, 83–89 (1985)

    Google Scholar 

  12. Chaboche, J.L.: Continuum damage mechanics. Parts I and II. J. Appl. Mech. 55, 59–72 (1988)

    Google Scholar 

  13. Murakami, S., Ohno, N.: Continuum theory of material damage at high temperature. In: Ohtani, R., et al. (eds.) High Temperature Creep Fatigue, p. 43. Elsevier, Amsterdam (1988)

    Google Scholar 

  14. Lemaitre, J., Desmorat, R.: Engineering Damage Mechanics: Ductile, Creep, Fatigue and Brittle Failures. Springer, Amsterdam (2005)

    Google Scholar 

  15. Chaboche, J.L., Boudifa, M., Saanouni, K.: A CDM approach of ductile damage with plastic compressibility. Int. J. Fract. 137(1), 51–75 (2006)

    MATH  Google Scholar 

  16. Lemaitre, J., Chaboche, J.L., Benallal, A., Desmorat, R.: Mécanique des matériaux solides, 3rd edn. Dunod, Paris (2009)

    Google Scholar 

  17. Murakami, S.: Continuum Damage Mechanics: A Continuum Mechanics Approach to the Analysis of Damage and Fracture. Springer, Berlin (2012)

    Google Scholar 

  18. Rajhi, W., Saanouni, K., Sidhom, H.: Anisotropic ductile damage fully coupled with anisotropic plastic flow: modelling, experimental validation, and application to metal forming simulation. Int. J. Damage Mech. 23, 1211–1256 (2014)

    Google Scholar 

  19. Pan, Y., Tian, F., Zhong, Z.: A continuum damage-healing model of healing agents based self-healing materials. Int. J. Damage Mech. 27, 754–778 (2018)

    Google Scholar 

  20. Kachanov, L.M.: Introduction to Continuum Damage Mechanics. Springer, Amsterdam (1986)

    MATH  Google Scholar 

  21. Rabotnov Y.M.: In: F. A. Leckie, (ed.), Creep Problems in Structures Members. North-Holland, Amsterdam (1969)

  22. Leckie, F.A., Hayhurst, D.R.: Creep rupture of structures. Proc. R. Soc. Lond. A 340, 323 (1974)

    MATH  Google Scholar 

  23. Chaboche, J.L.: Sur l’utilisation des variables d’état interne pour la description du comportement viscoplastique et de la rupture par endommagement. JournalSymp. Franco-Polonais de Rhéologie et Mécanique, Cracovie (1977)

  24. Chaboche J.L.: Description thermodynamique et phénoménologique de la viscoplasticité cyclique avec endommagement. Thèse d’état, Université P. et M. Curie, Paris VI (1978)

  25. Cordebois, J.P., Sidoroff, F.: Damage Induced Elastic Anisotropy, Colloque Euromech 115. Villard de Lans, France (1979)

    MATH  Google Scholar 

  26. Lemaitre, J.: How to use damage mechanics. Nucl. Eng. Des. 80, 233–245 (1984)

    Google Scholar 

  27. Simo, J.C., Ju, J.W.: Stress and strain based continuum damage models. Part I: formulation. Part II: computational aspects. Int. J. Solids Struct. 23(7), 821–864 (1987)

    MATH  Google Scholar 

  28. Saanouni, K., Forster, C., Benhatira, F.: On the anelastic flow with damage. Int. J. Damage Mech. 3, 141–169 (1994)

    Google Scholar 

  29. Saanouni, K., Nesnas, K., Hammi, Y.: Damage modelling in metal forming processes. Int. J. Damage Mech. 9, 196–240 (2000)

    Google Scholar 

  30. Nesnas, K., Saanouni, K.: Integral formulation of coupled damage and viscoplastic constitutive equations: formulation and computational issues. Int. J. Damage Mech. 11, 367–397 (2002)

    Google Scholar 

  31. Saanouni, K.: Damage Mechanics in Metal Forming. Advanced Modelling and Numerical Simulation. ISTE/Wiley, London (2012)

    Google Scholar 

  32. Ghozzi, Y., Labergere, C., Saanouni, K., Parrico, A.: Modelling and numerical simulation of thick sheet double slitting process using continuum damage mechanics. Int. J. Damage Mech. 23, 1150–1167 (2014)

    Google Scholar 

  33. Diamantopoulou, E., Liu, W., Labergere, C., Badreddine, H., Saanouni, K., Hu, P.: Micromorphic constitutive equations with damage applied to metal forming. Int. J. Damage Mech. l 26, 314–339 (2017)

    Google Scholar 

  34. Ayadi, W., Laiarinandrasana, L., Saï, K.: Anisotropic (Continuum Damage Mechanics)-based multi-mechanism model for semi-crystalline polymer. Int. J. Damage Mech. 27, 357–386 (2018)

    Google Scholar 

  35. Baranger, E.: Extension of a fourth-order damage theory to anisotropic history: application to ceramic matrix compostites under a multi-axial non-proportional loading. Int. J. Damage Mech. 27, 238–252 (2018)

    Google Scholar 

  36. Hfaiedh, N., Roos, A., Badreddine, H., Saanouni, K.: Interaction between ductile damage and texture evolution in finite polycrystalline elastoplasticity. Int. J. Damage Mech. 28, 481–501 (2019)

    Google Scholar 

  37. Voyiadjis, G.Z., Kattan, P.I.: Fundamental aspects for characterization in continuum damage mechanics. Int. J. Damage Mech. 28, 200–218 (2019)

    Google Scholar 

  38. Cordebois, J.P., Sidoroff, F.: Endommagement anisotrope en élasticité et plasticité, pp. 45–60. J. Méc. Théo. App, Numéro spécial (1982)

    MATH  Google Scholar 

  39. Saanouni, K.: Sur l’analyse de la fissuration des milieux élastoplastiques par la théorie de l’endommagement continu. Université de Technologie de Compiègne, France, Thèse d’état (1988)

  40. Saliya, K., Panicaud, B., Labergère, C.: Advanced modelling and numerical simulations for the thermo-chemico-mechanical behaviour of materials with damage and hydrogen, based on the thermodynamics of irreversible processes. Finite Elem. Anal. Des. 164, 79–97 (2019)

    MathSciNet  Google Scholar 

  41. Di Leo, C.V., Anand, L.: Hydrogen in metals: a coupled theory for species diffusion and large elastic-plastic deformations. Int. J. Plast. 43, 42–69 (2013)

    Google Scholar 

  42. Steeman, H.-J., Van Belleghem, M., Janssens, A., De Paepe, M.: Coupled simulation of heat and moisture transport in air and porous materials for the assessment of moisture related damage. Build. Environ. 44, 2176–2184 (2009)

    Google Scholar 

  43. Boehler J.P., Lois de comportement anisotrope des milieux continus. J. de Mécanique, 17, N\(^0\)2 (1978)

  44. Krom, A., Koers, R., Bakker, A.: Hydrogen transport near a blunting crack tip. J. Mech. Phys. Solids 47, 971–992 (1999)

    MATH  Google Scholar 

  45. Germain, P.: Mécanique des milieux continus. Masson, Paris (1973)

    MATH  Google Scholar 

  46. Fer, F.: Thermodynamique macroscopique 2. Cours et Documents de Chimie Séries. Gordon & Breach Publishing Group, Paris (1971)

    Google Scholar 

  47. Vidal, C., Dewel, G., Borckmans, P.: Au-delà de l’équilibre, Collection Enseignement Des Sciences. Hermann (1994)

  48. Sofronis, P., Liang, Y., Aravas, N.: Hydrogen induced shear localization of the plastic flow in metals and alloys. Europ. J. Mech. A Solids 20, 857–872 (2001)

    MATH  Google Scholar 

  49. Lemaitre, J.: A Course of Damage Mechanics. Springer, Berlin (1992)

    MATH  Google Scholar 

  50. Saanouni, K., Lestriez, P., Labergere, C.: 2d adaptive FE simulations in finite thermo-elasto-viscoplasticity with ductile damage: Application to orthogonal metal cutting by chip formation and breaking. Int. J. Damage Mech. 20, 23–61 (2011)

    Google Scholar 

  51. Onsager, L.: Reciprocal relations in irreversible processes. I. Phys. Rev. 37, 2265–2279 (1931)

    MATH  Google Scholar 

  52. Onsager, L.: Reciprocal relations in irreversible processes. II. Phys. Rev. 38, 405–426 (1931)

    MATH  Google Scholar 

  53. Philibert, J.: Atom movements: Diffusion and mass transport in solids, EDP Sciences. Les Ulis, France (1995)

  54. Oriani, R.: The diffusion and trapping of hydrogen in steel. Acta Metall. 18, 147–157 (1970)

    Google Scholar 

Download references

Acknowledgements

The authors express their gratitude to the financial support from the Region Grand Est and the FEDER (Europe).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benoît Panicaud.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The partial derivatives \(\displaystyle {\frac{\partial c_T}{\partial \varvec{\varepsilon }^e}}\), \(\displaystyle {\frac{\partial c_T}{\partial p}}\), \(\displaystyle {\frac{\partial c_T}{\partial D}}\), \(\displaystyle {\frac{\partial c_T}{\partial T}}\) of Eq. (61) are calculated here.

\(c_T\) depends on \(\varvec{\varepsilon }^e\) only by \(K^T\). So, using (59) and (60) we have:

$$\begin{aligned} \frac{\partial c_T}{\partial \varvec{\varepsilon }^e} = \frac{\partial c_T}{\partial K^T} \frac{\partial K^T}{\partial \varvec{\varepsilon }^e} \end{aligned}$$
(67)

with

$$\begin{aligned} \frac{\partial c_T}{\partial K^T}= & {} \frac{\sqrt{1-D} N^T c_L N^L}{(N^L + \sqrt{1-D} c_L K^T)^2} \frac{\partial K^T}{\partial T}, \end{aligned}$$
(68)
$$\begin{aligned} \frac{\partial K^T}{\partial \varvec{\varepsilon }^e}= & {} - \frac{9K \beta \sqrt{1-D}(\sqrt{1-D}-1)}{\sqrt{1-hD} \mathcal {R}_g T} K^T. \end{aligned}$$
(69)

\(c_T\) depends on p only by \(N^T\),

$$\begin{aligned} \frac{\partial c_T}{\partial p} = \frac{\partial c_T}{\partial N^T} \frac{\partial N^T}{\partial p}, \end{aligned}$$
(70)

with

$$\begin{aligned} \frac{\partial c_T}{\partial N^T} = \theta _T . \end{aligned}$$
(71)

\(c_T\) depends on T only by \(K^T\), and using Eqs. (59) and (60) we have:

$$\begin{aligned} \frac{\partial c_T}{\partial T} = \frac{\partial c_T}{\partial K^T} \frac{\partial K^T}{\partial T} \end{aligned}$$
(72)

with

$$\begin{aligned} \frac{\partial K^T}{\partial T} = \frac{K^T}{\sqrt{1-hD} \mathcal {R}_g T^2} (-\varDelta \mu _b + 3K\beta \sqrt{1-D} (\sqrt{1-D}-1)(\varvec{\varepsilon }^e : \varvec{1})) \end{aligned}$$
(73)

and \(\displaystyle {\frac{\partial {c_T}}{\partial K^T}}\) given by Eq. (68).

\(\displaystyle {\frac{\partial c_T}{\partial D}}\) is calculated using Eqs. (59) and (60):

$$\begin{aligned} \frac{\partial c_T}{\partial D} = \frac{N^T (1+\theta _T)\left( -\theta _T + 2(1-D)^{3/2} (1-\theta _T) \theta _L \frac{\partial K^T}{\partial D}\right) }{2(1-D)} \end{aligned}$$
(74)

with

$$\begin{aligned} \frac{\partial K^T}{\partial D}= & {} \frac{\left( -(1-h)\mu _{L0} - h \sqrt{1-D} \mu _{T0}\right) K^T}{2\sqrt{1-D} \sqrt{1-hD} (1-hD) \mathcal {R}_g T} \nonumber \\&- \frac{3K \beta \sqrt{1-D} \left( \sqrt{1-D} (h-2) + (1-h)\right) (\varvec{\varepsilon }^e : \varvec{1}) K^T}{2\sqrt{1-hD} (1-hD) \mathcal {R}_g T}. \end{aligned}$$
(75)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saliya, K., Labergère, C., Panicaud, B. et al. Investigation on a full coupling between damage and other thermomechanical behaviours in the standard thermodynamic framework including environmental effects. Acta Mech 231, 1731–1749 (2020). https://doi.org/10.1007/s00707-020-02621-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-020-02621-x

Navigation