Skip to main content
Log in

Modeling and simulation of non-isothermal rate-dependent damage processes in inhomogeneous materials using the phase-field approach

  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

We present a continuum model that incorporates rate-dependent damage and fracture, a material order-parameter field and temperature within a phase-field approach. The models covers partial damage as well as the formation of macro-cracks. For the material order parameter we assume a Cahn Larché-type dynamics, which makes the model in particular applicable to binary alloys. We give thermodynamically consistent evolution equations resulting from a unified variational approach. Diverse coupling mechanisms can be covered within the model, such as heat dissipation, thermal-expansion-induced failure and crack deflection due to inhomogeneities. With help of an adaptive finite element code we conduct numerical experiments of different complexity in order to study the possibilities and limitations of the presented model. We furthermore include anisotropic linear elasticity in our model and investigate the effect on the crack pattern.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Notes

  1. Small Greek letters are used for spatial indexing. We use the summation convention for coordinates unless otherwise stated.

References

  1. Silling SA (2000) Reformulation of elasticity theory for discontinuities and long-range forces. J Mech Phys Solids 48:175–209

    Article  MathSciNet  MATH  Google Scholar 

  2. Barenblatt GI (1962) The mathematical theory of equilibrium cracks in brittle fracture. Adv Appl Mech 7:55–129

    Article  MathSciNet  Google Scholar 

  3. Francfort GA, Marigo JJ (1998) Revisiting brittle fractures as an energy minimization problem. J Mech Phys Solids 46:1319–1342

    Article  MathSciNet  MATH  Google Scholar 

  4. Bourdin B, Francfort GA, Marigo JJ (2000) Numerical experiments in revisited brittle fracture. J Mech Phys Solids 48:797–826

    Article  MathSciNet  MATH  Google Scholar 

  5. Griffith AA (1921) The phenomena of rupture and flow in solids. Philos Trans R Soc A 221:163–198

    Article  Google Scholar 

  6. Frémond M, Nedjar B (1996) Damage, gradient and principle of virtual power. Int J Solid Struct 33:1083–1103

    Article  MathSciNet  MATH  Google Scholar 

  7. Miehe C, Lambrecht M (2001) Algorithm for computation of stresses and elasticity moduli in terms of seth-hill’s family of generalized strain tensors. Commum Numer Meth Eng 17:337–353

    Article  MATH  Google Scholar 

  8. Kuhn C, Müller R (2008) A phase field model for fracture. Proc Appl Math Mech 8:10223–10224

    Article  Google Scholar 

  9. Amor H, Marigo JJ, Maurini C (2009) Regularized formulation of the variational brittle fracture with unilateral contact: numerical experiments. J Mech Phys Solids 57:1209–1229

    Article  MATH  Google Scholar 

  10. Mielke A, Roubiček T (2006) Rate-independent damage processes in nonlinear elasticity. Math Model Meth Appl sci 16:177–209

    Article  MathSciNet  MATH  Google Scholar 

  11. Bourdin B (2007) Numerical implementation of the variational formulation of brittle fracture. Interface Free Bound 9:411–430

    Article  MathSciNet  MATH  Google Scholar 

  12. Ambati M, Gerasimov T, De Lorenzis L (2015) A review on phase-field models of brittle fracture and a new fast hybrid formulation. Comput Mech 55:383–405

    Article  MathSciNet  MATH  Google Scholar 

  13. Mielke A, Roubícek T, Zeman J (2010) Complete damage in elastic and viscoelastic media and its energetics. Comput Method Appl Mech 199:1242–1253

    Article  MathSciNet  MATH  Google Scholar 

  14. Kirkpatrick S, Gelatt CD, Vecchi MP (1983) Optimization by simulated annealing. Science 220:671–680

    Article  MathSciNet  MATH  Google Scholar 

  15. Miehe C, Hofacker M, Welschinger F (2010) A phase field model for rate-independent crack propagation: robust algorithmic implementation based on operator splits. Comput Meth Appl Mech Eng 199:2776–2778

    Article  MathSciNet  MATH  Google Scholar 

  16. Krupp U (2007) Fatigue crack propagation in metals and alloys: microstructural aspects and modelling concepts. Wiley, New York

    Book  Google Scholar 

  17. Xue L, Wierzbicki T (2008) Ductile fracture initiation and propagation modeling using damage plasticity theory. Eng Fract Mech 75:3276–3293

    Article  Google Scholar 

  18. Besson J (2010) Continuum models of ductile fracture: a review. Int J Damage Mech 19:3–52

    Article  Google Scholar 

  19. Tvergaard V, Hutchinson JW (2002) Two mechanisms of ductile fracture: void by void growth versus multiple void interaction. Int J Solids Struct 39:3581–3597

    Article  MATH  Google Scholar 

  20. Messner MC, Beaudoin AJ, Dodds RH Jr (2015) An interface compatibility/equilibrium mechanism for delamination fracture in aluminum-lithium alloys. Eng Fract Mech 133:70–84

    Article  Google Scholar 

  21. Bieler TR, Eisenlohr P, Roters F, Kumar D, Mason DE, Crimp MA, Raabe D (2009) The role of heterogeneous deformation on damage nucleation at grain boundaries in single phase metals. Int J Plast 25:1655–1683

    Article  MATH  Google Scholar 

  22. Nguyen TT, Yvonnet J, Zhu QZ, Bornert M, Chateau C (2015) A phase field method to simulate crack nucleation an propagation in strongly heterogeneous materials from direct imaging of their microstructure. Eng Fract Mech 139:18–39

    Article  Google Scholar 

  23. Lau J, Shangguan D, Castello T, Horsley R, Smetana J, Hoo N, Dauksher W, Love D, Menis I, Sullivan B (2004) Failure analysis of lead-free solder joints for high-density packages. Solder Surf Mt Technol 16:69–76

    Article  Google Scholar 

  24. Goldstein B, Jerina KL, Sastry SML (1999) Microstructural evolution and thermomechanical fatigue life of solder joints. In: Panontin TL, Sheppard SD (eds) Thermo-mechanical fatigue behavior of materials: twenty-ninth volume, ASTM-STP 1332. American Society for Testing and Materials, West Conshohoken, pp 768–801

  25. Garcke H (2003) On Cahn–Hilliard systems with elasticity. Proc R Soc Edinb A 133:307–331

    Article  MathSciNet  MATH  Google Scholar 

  26. Heinemann C, Kraus C (2011) Existence of weak solutions for Cahn-Hilliard systems coupled with elasticity and damage. Adv Math Sci Appl 21:321–359

    MathSciNet  MATH  Google Scholar 

  27. Schneider D, Schoof E, Huang Y, Selzer M, Nestler B (2016) Phase-field modeling of crack propagation in multiphase systems. Comput Methods Appl Mech Eng 312:186–195

    Article  MathSciNet  Google Scholar 

  28. Roubícek T, Tomassetti G (2015) Thermodynamics of damageable materials under diffusion: modeling and analysis. Z Angew Math Phys 66:3535

    Article  MathSciNet  MATH  Google Scholar 

  29. Wang HS (2015) An extended element-free Galerkin method for thermo-mechanical dynamic fracture in linear and nonlinear materials. Comput Mater Sci 98:366–371

    Article  Google Scholar 

  30. Hanke H, Knees D (2015) Homogenization of elliptic systems with non-periodic, state dependent coefficients. Asymptotic Anal 92:203–234

    MathSciNet  MATH  Google Scholar 

  31. Heinemann C, Kraus C (2015) Complete damage in linear elastic materials: modeling, weak formulation and existence results. Calc Var Partial Differ 54:217–250

    Article  MathSciNet  MATH  Google Scholar 

  32. Schell-Sorokin AJ, Tromp RM (1990) Mechanical stresses in (sub)monolayer epitaxial films. Phys Rev Lett 64:1039

    Article  Google Scholar 

  33. Cahn JW, Hilliard JE (1958) Free energy of a nonuniform system. I. Interfacial free energy. J Chem Phys 28:258–267

    Article  Google Scholar 

  34. Blowey JF, Elliot CM (1991) The Cahn-Hilliard gradient theory for phase separation with non-smooth free energy Part I: Mathematical analysis. Eur J Appl Math 2:233–279

    Article  MATH  Google Scholar 

  35. Nestler B, Garcke H, Stinne B (2005) Multicomponent alloy solidification: phase-field modeling and simulations. Phys Rev E 71:041609

    Article  Google Scholar 

  36. Cross MC, Hohenberg PC (1993) Pattern formation outside of equilibrium. Rev Mod Phys 65:851

    Article  Google Scholar 

  37. Bai F, Elliott CM, Gardiner A, Spence A, Stuart AM (1995) The viscous Cahn–Hilliard equation. Part I: computations. Nonlinearity 8:131

    Article  MathSciNet  MATH  Google Scholar 

  38. Kohn RV, Otto F (2002) Upper bounds on coarsening rates. Commun. Math. Phys. 229:375–395

    Article  MathSciNet  MATH  Google Scholar 

  39. Dai S, Pego RL (2005) An upper bound on the coarsening rate for mushy zones in a phase-field model. Interfaces Free Bound 7:187–197

    Article  MathSciNet  MATH  Google Scholar 

  40. Dreyer W, Müller WH (2001) Modeling diffusional coarsening in eutectic tin/lead solders: a quantitative approach. Int J Solids Struct 38:1433–1458

    Article  MATH  Google Scholar 

  41. Kanchanomai C, Miyashita Y, Mutoh Y (2002) Low cycle fatigue behavior and mechanisms of a eutectic Sn–Pb solder 63Sn/37Pb. Int J Fatigue 24:671–683

    Article  Google Scholar 

  42. Lide DR (ed) (2005) CRC handbook of chemistry and physics, internet version. CRC Press, Boca Raton.http://www.hbcpnetbase.com

  43. Shewchuk JR (1996) Triangle: engineering a 2D quality mesh generator and Delaunay triangulator. Appl Comput Geom 1148:203–222

    Google Scholar 

  44. Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. Int J Numer Methods Eng 46:131–150

    Article  MATH  Google Scholar 

  45. Sukumar N, Dolbow JE, Moës N (2015) Extended finite element method in computational fracture mechanics: a retrospective examination. Int J Fract 196:189–206

    Article  Google Scholar 

  46. Coleman TF, Li Y (1996) A reflective newton method for minimizing a quadratic function subject to bounds of some of the variables. SIAM J Optim 6:1040–1058

    Article  MathSciNet  MATH  Google Scholar 

  47. Davis TA (2004) Algorithm 832: UMFPACK V4.3—an unsymmetric-pattern multifrontal method. ACM Trans Math Softw 30:196–199

    Article  MathSciNet  MATH  Google Scholar 

  48. Gurtin ME (1996) Generalized Ginzburg–Landau and Cahn–Hilliard equations based on a microforce balance. Phys D 92:178–192

    Article  MathSciNet  MATH  Google Scholar 

  49. Garcke H, Rumpf M, Weikard U (2001) The Cahn–Hilliard equation with elasticity—finite element approximation and qualitative studies. Interface Free Bound 3:101–118

    Article  MathSciNet  MATH  Google Scholar 

  50. Hu SY, Chen LQ (2001) A Phase field model for evolving microstructures eith strong elastic inhomogeneity. Acta Mater 49:1879–1890

    Article  Google Scholar 

  51. Pratt RE, Stromswold EI, Quesnel DJ (1993) Mode I fracture toughness testing of eutectic Sn–Pb solder joints. J Electron Mater 23:375–381

    Article  Google Scholar 

  52. Bourdin B, Larsen CJ, Richardson CL (2011) A time-discrete model for dynamic fracture based on crack regularization. Int J Fract 168:133–143

    Article  MATH  Google Scholar 

  53. Plekhov O, Bannikov M, Terekhina A, Fedorova A (2013) 090 Infrared Study of Heat Dissipation under Fatigue Crack Propagation, CP2012

  54. Pritam C, Zhang Y, Tonks MR (2014) Multi-scale modeling of microstructure dependent intergranular fracture in UO2 using a phase-field based method. INL/EXT-14-33190

Download references

Acknowledgements

The authors would like to acknowledge the Einstein Foundation Berlin, who partially supported this work in the framework of the MATHEON.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Radszuweit.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 169 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Radszuweit, M., Kraus, C. Modeling and simulation of non-isothermal rate-dependent damage processes in inhomogeneous materials using the phase-field approach. Comput Mech 60, 163–179 (2017). https://doi.org/10.1007/s00466-017-1393-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-017-1393-4

Keywords

Mathematics Subject Classification

Navigation