Skip to main content
Log in

A UNIFORM MODEL FOR KIRILLOV–RESHETIKHIN CRYSTALS III: NONSYMMETRICMACDONALD POLYNOMIALS AT t = 0 AND DEMAZURE CHARACTERS

  • Published:
Transformation Groups Aims and scope Submit manuscript

Abstract

We establish the equality of the specialization E (x ; q; 0) of the nonsymmetric Macdonald polynomial E (x ; q; t) at t = 0 with the graded character gch U + w (λ) of a certain Demazure-type submodule U + w (λ) of a tensor product of “single-column” Kirillov–Reshetikhin modules for an untwisted affine Lie algebra, where λ is a dominant integral weight and w is a (finite) Weyl group element; this generalizes our previous result, that is, the equality between the specialization P λ(x ; q; 0) of the symmetric Macdonald polynomial P λ(x ; q; t) at t = 0 and the graded character of a tensor product of single-column Kirillov–Reshetikhin modules. We also give two combinatorial formulas for the mentioned specialization of nonsymmetric Macdonald polynomials: one in terms of quantum Lakshmibai–Seshadri paths and the other in terms of the quantum alcove model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Beck, H. Nakajima, Crystal bases and two-sided cells of quantum affine algebras, Duke Math. J. 123 (2004), 335–402.

    MATH  MathSciNet  Google Scholar 

  2. A. Björner, F. Brenti, Combinatorics of Coxeter Groups, Graduate Texts in Mathematics Vol. 231, Springer, New York, 2005.

  3. B. Ion, Nonsymmetric Macdonald polynomials and Demazure characters, Duke Math. J. 116 (2003), 299–318.

    Article  MATH  MathSciNet  Google Scholar 

  4. M. Ishii, S. Naito, D. Sagaki, Semi-infinite LakshmibaiSeshadri path model for level-zero extremal weight modules over quantum affine algebras, Adv. Math. 290 (2016), 967–1009.

  5. V. G. Kac, Infinite Dimensional Lie Algebras, 3rd Edition, Cambridge University Press, Cambridge, 1990.

  6. M. Kashiwara, Crystal bases of modified quantized enveloping algebra, Duke Math. J. 73 (1994), 383–413.

    Article  MATH  MathSciNet  Google Scholar 

  7. M. Kashiwara, On level-zero representations of quantized affine algebras, Duke Math. J. 112 (2002), 117–175.

    Article  MATH  MathSciNet  Google Scholar 

  8. M. Kashiwara, Level zero fundamental representations over quantized affine algebras and Demazure modules, Publ. Res. Inst. Math. Sci. 41 (2005), 223–250.

    Article  MATH  MathSciNet  Google Scholar 

  9. T. Lam, M. Shimozono, Quantum cohomology of G/P and homology of affine Grassmannian, Acta Math. 204 (2010), 49–90.

    Article  MATH  MathSciNet  Google Scholar 

  10. C. Lenart, On the combinatorics of crystal graphs, I. Lusztig's involution, Adv. Math. 211 (2007), 324–340.

  11. C. Lenart, A. Lubovsky, A generalization of the alcove model and its applications, J. Algebraic Comb. 41 (2015), 751–783.

    Article  MATH  MathSciNet  Google Scholar 

  12. C. Lenart, A. Lubovsky, A uniform realization of the combinatorial R-matrix, preprint 2015, arXiv:1503.01765.

  13. C. Lenart, S. Naito, D. Sagaki, A. Schilling, M. Shimozono, A uniform model for KirillovReshetikhin crystals I: Lifting the parabolic quantum Bruhat graph, Int. Math. Res. Not. 2015 (2015), 1848–1901.

  14. C. Lenart, S. Naito, D. Sagaki, A. Schilling, M. Shimozono, A uniform model for KirillovReshetikhin crystals II: Alcove model, path model, and P = X, Int. Math. Res. Not. 2016, doi: 10.1093/imrn/rnw129.

  15. C. Lenart, S. Naito, D. Sagaki, A. Schilling, M. Shimozono, Quantum LakshmibaiSeshadri paths and root operators, in: Proceedings of the 5th Mathematical Society of Japan Seasonal Institute: Schubert Calculus, Osaka, Japan, 2012, Advanced Studies in Pure Mathematics 71 (2016), 267–294.

  16. C. Lenart, A. Postnikov, Affine Weyl groups in K-theory and representation theory, Int. Math. Res. Not. 2007 (2007), 1–65.

    MATH  Google Scholar 

  17. C. Lenart, A. Postnikov, A combinatorial model for crystals of Kac-Moody algebras, Trans. Amer. Math. Soc. 360 (2008), 4349–4381.

    Article  MATH  MathSciNet  Google Scholar 

  18. P. Littelmann, A LittlewoodRichardson rule for symmetrizable KacMoody algebras, Invent. Math. 116 (1994), 329–346.

  19. P. Littelmann, Paths and root operators in representation theory, Ann. of Math. (2) 142 (1995), 499–525.

  20. I. G. Macdonald, Affine Hecke Algebras and Orthogonal Polynomials, Cambridge Tracts in Mathematics, Vol. 157, Cambridge University Press, Cambridge, 2003.

  21. S. Naito, D. Sagaki, LakshmibaiSeshadri paths of a level-zero weight shape and one-dimensional sums associated to level-zero fundamental representations, Compos. Math. 144 (2008), 1525–1556.

  22. S. Naito, D. Sagaki, Demazure submodules of level-zero extremal weight modules and specializations of Macdonald polynomials, Math. Zeit. 283 (2016), 937–978.

    Article  MATH  MathSciNet  Google Scholar 

  23. D. Orr, M. Shimozono, Specializations of nonsymmetric MacdonaldKoornwinder polynomials, preprint 2013, arXiv:1310.0279v1.

  24. D. Peterson, Quantum cohomology of G/P, Lecture Notes, Massachusetts Institute of Technology, Cambridge, MA, Spring 1997.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. SCHILLING.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

LENART, C., NAITO, S., SAGAKI, D. et al. A UNIFORM MODEL FOR KIRILLOV–RESHETIKHIN CRYSTALS III: NONSYMMETRICMACDONALD POLYNOMIALS AT t = 0 AND DEMAZURE CHARACTERS. Transformation Groups 22, 1041–1079 (2017). https://doi.org/10.1007/s00031-017-9421-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00031-017-9421-1

Navigation