Skip to main content
Log in

Quantum cohomology of G/P and homology of affine Grassmannian

  • Published:
Acta Mathematica

Abstract

Let G be a simple and simply-connected complex algebraic group, P ⊂ G a parabolic subgroup. We prove an unpublished result of D. Peterson which states that the quantum cohomology QH *(G/P) of a flag variety is, up to localization, a quotient of the homology H *(Gr G ) of the affine Grassmannian Gr G of G. As a consequence, all three-point genus-zero Gromov–Witten invariants of G/P are identified with homology Schubert structure constants of H *(Gr G ), establishing the equivalence of the quantum and homology affine Schubert calculi.

For the case G = B, we use Mihalcea’s equivariant quantum Chevalley formula for QH *(G/B), together with relationships between the quantum Bruhat graph of Brenti, Fomin and Postnikov and the Bruhat order on the affine Weyl group. As byproducts we obtain formulae for affine Schubert homology classes in terms of quantum Schubert polynomials. We give some applications in quantum cohomology.

Our main results extend to the torus-equivariant setting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bertram, A., Quantum Schubert calculus. Adv. Math., 128 (1997), 289–305.

    Article  MATH  MathSciNet  Google Scholar 

  2. Bezrukavnikov, R., Finkelberg, M. & Mirković, I., Equivariant homology and Ktheory of affine Grassmannians and Toda lattices. Compos. Math., 141 (2005), 746–768.

    Article  MATH  MathSciNet  Google Scholar 

  3. Bott, R., The space of loops on a Lie group. Michigan Math. J., 5 (1958), 35–61.

    Article  MATH  MathSciNet  Google Scholar 

  4. Bourbaki, N., Éléments de mathématique. Fasc. XXXIV. Groupes et algèbres de Lie. Chapitre IV: Groupes de Coxeter et systèmes de Tits. Chapitre V: Groupes engendrés par des réflexions. Chapitre VI: systèmes de racines. Actualités Scientifiques et Industrielles, 1337. Hermann, Paris, 1968.

  5. Brenti, F., Fomin, S. & Postnikov, A., Mixed Bruhat operators and Yang–Baxter equations for Weyl groups. Int. Math. Res. Not., 8 (1999), 419–441.

    Article  MathSciNet  Google Scholar 

  6. Buch, A. S., Kresch, A. & Tamvakis, H., Gromov–Witten invariants on Grassmannians. J. Amer. Math. Soc., 16 (2003), 901–915.

    Article  MATH  MathSciNet  Google Scholar 

  7. Chaput, P. E., Manivel, L. & Perrin, N., Quantum cohomology of minuscule homogeneous spaces. II. Hidden symmetries. Int. Math. Res. Not. IMRN, 22 (2007), Art. ID rnm107.

  8. Dyer, M. J., Hecke algebras and shellings of Bruhat intervals. Compos. Math., 89 (1993), 91–115.

    MATH  MathSciNet  Google Scholar 

  9. Fomin, S., Gelfand, S. & Postnikov, A., Quantum Schubert polynomials. J. Amer. Math. Soc., 10 (1997), 565–596.

    Article  MATH  MathSciNet  Google Scholar 

  10. Fulton, W. & Woodward, C., On the quantum product of Schubert classes. J. Algebraic Geom., 13 (2004), 641–661.

    MATH  MathSciNet  Google Scholar 

  11. Garland, H. & Raghunathan, M. S., A Bruhat decomposition for the loop space of a compact group: a new approach to results of Bott. Proc. Nat. Acad. Sci. U.S.A., 72:12 (1975), 4716–4717.

    Google Scholar 

  12. Ginzburg, V., Perverse sheaves on a Loop group and Langlands’ duality. Preprint, 1995. arXiv:alg-geom/9511007.

  13. Humphreys, J. E., Introduction to Lie Algebras and Representation Theory. Graduate Texts in Mathematics, 9. Springer, New York, 1978.

  14. Kac, V. G., Infinite-dimensional Lie Algebras. Cambridge University Press, Cambridge, 1990.

    MATH  Google Scholar 

  15. Kim, B., Quantum cohomology of flag manifolds G/B and quantum Toda lattices. Ann. of Math., 149 (1999), 129–148.

    Article  MATH  MathSciNet  Google Scholar 

  16. Kostant, B., Flag manifold quantum cohomology, the Toda lattice, and the representation with highest weight ϱ. Selecta Math., 2 (1996), 43–91.

    Article  MATH  MathSciNet  Google Scholar 

  17. Kostant, B. & Kumar, S., The nil Hecke ring and cohomology of G/P for a Kac–Moody group G. Adv. Math., 62 (1986), 187–237.

    Article  MATH  MathSciNet  Google Scholar 

  18. Kumar, S., Kac–Moody Groups, their Flag Varieties and Representation Theory. Progress in Mathematics, 204. Birkhäuser, Boston, MA, 2002.

  19. Lam, T., Schubert polynomials for the affine Grassmannian. J. Amer. Math. Soc., 21 (2008), 259–281.

    Article  MATH  MathSciNet  Google Scholar 

  20. Lam, T., Lapointe, L., Morse, J. & Shimozono, M., Affine insertion and Pieri rules for the affine Grassmannian. To appear in Mem. Amer. Math. Soc.

  21. Lam, T. & Shimozono, M., Dual graded graphs for Kac–Moody algebras. Algebra Number Theory, 1 (2007), 451–488.

    Article  MATH  MathSciNet  Google Scholar 

  22. Lapointe, L., Lascoux, A. & Morse, J., Tableau atoms and a new Macdonald positivity conjecture. Duke Math. J., 116 (2003), 103–146.

    Article  MATH  MathSciNet  Google Scholar 

  23. Lapointe, L. & Morse, J., Tableaux on k+1-cores, reduced words for affine permutations, and k-Schur expansions. J. Combin. Theory Ser. A, 112 (2005), 44–81.

    Article  MATH  MathSciNet  Google Scholar 

  24. _____ Quantum cohomology and the k-Schur basis. Trans. Amer. Math. Soc., 360:4 (2008), 2021–2040.

    Article  MATH  MathSciNet  Google Scholar 

  25. Mare, A. L., Polynomial representatives of Schubert classes in QH*(G/B). Math. Res. Lett., 9 (2002), 757–769.

    MATH  MathSciNet  Google Scholar 

  26. Mihalcea, L. C., Positivity in equivariant quantum Schubert calculus. Amer. J. Math., 128 (2006), 787–803.

    Article  MATH  MathSciNet  Google Scholar 

  27. _____ On equivariant quantum cohomology of homogeneous spaces: Chevalley formulae and algorithms. Duke Math. J., 140 (2007), 321–350.

    Article  MATH  MathSciNet  Google Scholar 

  28. Mitchell, S.A., Quillen’s theorem on buildings and loop groups. Enseign. Math., 34 (1988), 123–166.

    MATH  MathSciNet  Google Scholar 

  29. Peterson, D., Quantum cohomology of G/P. Lecture notes, Massachusetts Institute of Technology, Cambridge, MA, Spring 1997.

    Google Scholar 

  30. Postnikov, A., Quantum Bruhat graph and Schubert polynomials. Proc. Amer. Math. Soc., 133 (2005), 699–709.

    Article  MATH  MathSciNet  Google Scholar 

  31. Rietsch, K., Totally positive Toeplitz matrices and quantum cohomology of partial flag varieties. J. Amer. Math. Soc., 16 (2003), 363–392.

    Article  MATH  MathSciNet  Google Scholar 

  32. Spanier, E. H., Algebraic Topology. Springer, New York, 1981.

    Google Scholar 

  33. Verma, D.-N., Möbius inversion for the Bruhat ordering on a Weyl group. Ann. Sci. École Norm. Sup., 4 (1971), 393–398.

    MATH  Google Scholar 

  34. Woodward, C. T., On D. Peterson’s comparison formula for Gromov–Witten invariants of G/P. Proc. Amer. Math. Soc., 133:6 (2005), 1601–1609.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Lam.

Additional information

This work was partially supported by NSF grants DMS-0401012, DMS-0600677, DMS-0652641 and DMS-0652648.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lam, T., Shimozono, M. Quantum cohomology of G/P and homology of affine Grassmannian. Acta Math 204, 49–90 (2010). https://doi.org/10.1007/s11511-010-0045-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11511-010-0045-8

Keywords

Navigation